blob: c1a39ef26aac9ad909fab9146e72c694a801b18c [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLDirectDeconvolutionLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include <memory>
#include <tuple>
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
CLDirectDeconvolutionLayer::CLDirectDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
: _memory_group(std::move(memory_manager)),
_scale_f(),
_conv_f(),
_flip_weights(),
_scaled_output(),
_original_weights(nullptr),
_weights_flipped(),
_flip_axis(),
_is_prepared(false)
{
}
Status CLDirectDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, ITensorInfo *output, const PadStrideInfo &info,
const WeightsInfo &weights_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
const DataLayout data_layout = input->data_layout();
const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) != weights->dimension(idx_h));
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) < 1);
ARM_COMPUTE_RETURN_ERROR_ON(!info.padding_is_symmetric());
const unsigned int stride_x = info.stride().first;
const unsigned int stride_y = info.stride().second;
auto out_dims = deconvolution_output_dimensions(input->dimension(idx_w), input->dimension(idx_h), weights->dimension(idx_w), weights->dimension(idx_h),
info.pad().first, info.pad().second, stride_x, stride_y);
const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output, weights);
if(bias != nullptr)
{
if(is_data_type_quantized_asymmetric(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, bias);
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_w) != output_shape[idx_w], "Output's width is invalid.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_h) != output_shape[idx_h], "Output's height is invalid.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_c) != output_shape[idx_c], "Output's depth is invalid.");
unsigned int padx = 0;
unsigned int pady = 0;
const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, out_dims, padx, pady);
TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape).set_data_layout(data_layout));
const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionLayerUpsample::validate(input, &scale_out_info, info));
ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, weights_info));
return Status{};
}
void CLDirectDeconvolutionLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
const WeightsInfo &weights_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
const unsigned int stride_x = info.stride().first;
const unsigned int stride_y = info.stride().second;
const DataLayout data_layout = input->info()->data_layout();
const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
_original_weights = weights;
_flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32));
_weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout));
_flip_weights.configure(weights, &_weights_flipped, &_flip_axis);
auto out_dims = deconvolution_output_dimensions(input->info()->dimension(idx_w), input->info()->dimension(idx_h), weights->info()->dimension(idx_w), weights->info()->dimension(idx_h),
info.pad().first, info.pad().second, stride_x, stride_y);
const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_layout(data_layout));
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(CLDirectDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info));
_is_prepared = weights_info.retain_internal_weights();
_memory_group.manage(&_scaled_output);
// Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
unsigned int padx = 0;
unsigned int pady = 0;
const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, out_dims, padx, pady);
TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
scale_out_info.set_data_layout(data_layout);
_scaled_output.allocator()->init(scale_out_info);
// configure scale function
const PadStrideInfo upsample_info(stride_x, stride_y, padx / 2, pady / 2);
_scale_f.configure(input, &_scaled_output, upsample_info);
// Setup the function to convolve the upscaled output
const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
_conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info, weights_info);
_scaled_output.allocator()->allocate();
// Setup flip axis data
_flip_axis.allocator()->allocate();
_flip_axis.map(true);
auto axis_data = reinterpret_cast<uint32_t *>(_flip_axis.buffer());
if(weights->info()->data_layout() == DataLayout::NHWC)
{
axis_data[0] = 1;
axis_data[1] = 2;
}
else
{
axis_data[0] = 0;
axis_data[1] = 1;
}
_flip_axis.unmap();
}
void CLDirectDeconvolutionLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
_scale_f.run();
_conv_f.run();
}
void CLDirectDeconvolutionLayer::prepare()
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
// Run weights flipping and mark original weights tensor as unused
_weights_flipped.allocator()->allocate();
_flip_weights.run();
_original_weights->mark_as_unused();
// Prepare convolution
_conv_f.prepare();
// Free flipped weights
if(!_weights_flipped.is_used())
{
_weights_flipped.allocator()->free();
}
_is_prepared = true;
}
}
} // namespace arm_compute