blob: f3f16cd8c0680f6c0b83de9cd51f2d5134e81676 [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/runtime/CL/CLMemoryGroup.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
namespace arm_compute
{
const cl::Buffer CLTensorAllocator::_empty_buffer = cl::Buffer();
namespace
{
/** Helper function used to allocate the backing memory of a tensor
*
* @param[in] context OpenCL context to use
* @param[in] size Size of the allocation
* @param[in] alignment Alignment of the allocation
*
* @return A wrapped memory region
*/
std::unique_ptr<ICLMemoryRegion> allocate_region(const cl::Context &context, size_t size, cl_uint alignment)
{
// Try fine-grain SVM
std::unique_ptr<ICLMemoryRegion> region = support::cpp14::make_unique<CLFineSVMMemoryRegion>(context,
CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER,
size,
alignment);
// Try coarse-grain SVM in case of failure
if(region != nullptr && region->ptr() == nullptr)
{
region = support::cpp14::make_unique<CLCoarseSVMMemoryRegion>(context, CL_MEM_READ_WRITE, size, alignment);
}
// Try legacy buffer memory in case of failure
if(region != nullptr && region->ptr() == nullptr)
{
region = support::cpp14::make_unique<CLBufferMemoryRegion>(context, CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_WRITE, size);
}
return region;
}
/** Clears quantization arrays
*
* @param[in, out] scale Quantization scale array
* @param[in, out] offset Quantization offset array
*/
void clear_quantization_arrays(CLFloatArray &scale, CLInt32Array &offset)
{
// Clear arrays
scale = CLFloatArray();
offset = CLInt32Array();
}
/** Helper function used to create quantization data arrays
*
* @param[in, out] scale Quantization scale array
* @param[in, out] offset Quantization offset array
* @param[in] qinfo Quantization info
* @param[in] pad_size Pad size to use in case array needs to be padded for computation purposes
*
* @return A pair (scale, offset) containing the respective allocated and filled arrays
*/
void populate_quantization_info(CLFloatArray &scale, CLInt32Array &offset, const QuantizationInfo &qinfo, size_t pad_size)
{
clear_quantization_arrays(scale, offset);
// Create scale array
const std::vector<float> &qscale = qinfo.scale();
const size_t num_elements = qscale.size();
const size_t element_size = sizeof(std::remove_reference<decltype(qscale)>::type::value_type);
scale = CLFloatArray(num_elements + pad_size);
scale.resize(num_elements);
CLScheduler::get().queue().enqueueWriteBuffer(scale.cl_buffer(), CL_TRUE, 0, num_elements * element_size, qinfo.scale().data());
}
} // namespace
CLTensorAllocator::CLTensorAllocator(CLTensor *owner)
: _associated_memory_group(nullptr), _memory(), _mapping(nullptr), _owner(owner), _scale(), _offset()
{
}
CLQuantization CLTensorAllocator::quantization() const
{
return { &_scale, &_offset };
}
uint8_t *CLTensorAllocator::data()
{
return _mapping;
}
const cl::Buffer &CLTensorAllocator::cl_data() const
{
return _memory.region() == nullptr ? _empty_buffer : _memory.cl_region()->cl_data();
}
void CLTensorAllocator::allocate()
{
// Allocate tensor backing memory
if(_associated_memory_group == nullptr)
{
if(_memory.region() != nullptr && _memory.cl_region()->cl_data().get() != nullptr)
{
// Memory is already allocated. Reuse it if big enough, otherwise fire an assertion
ARM_COMPUTE_ERROR_ON_MSG(info().total_size() > _memory.region()->size(),
"Reallocation of a bigger memory region is not allowed!");
}
else
{
// Perform memory allocation
_memory.set_owned_region(allocate_region(CLScheduler::get().context(), info().total_size(), 0));
}
}
else
{
_associated_memory_group->finalize_memory(_owner, _memory, info().total_size());
}
// Allocate and fill the quantization parameter arrays
if(info().data_type() == DataType::QSYMM8_PER_CHANNEL)
{
const size_t pad_size = 0;
populate_quantization_info(_scale, _offset, info().quantization_info(), pad_size);
}
// Lock allocator
info().set_is_resizable(false);
}
void CLTensorAllocator::free()
{
_mapping = nullptr;
_memory.set_region(nullptr);
clear_quantization_arrays(_scale, _offset);
info().set_is_resizable(true);
}
Status CLTensorAllocator::import_memory(cl::Buffer buffer)
{
ARM_COMPUTE_RETURN_ERROR_ON(buffer.get() == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(buffer.getInfo<CL_MEM_SIZE>() < info().total_size());
ARM_COMPUTE_RETURN_ERROR_ON(buffer.getInfo<CL_MEM_CONTEXT>().get() != CLScheduler::get().context().get());
ARM_COMPUTE_RETURN_ERROR_ON(_associated_memory_group != nullptr);
_memory.set_owned_region(support::cpp14::make_unique<CLBufferMemoryRegion>(buffer));
info().set_is_resizable(false);
return Status{};
}
void CLTensorAllocator::set_associated_memory_group(CLMemoryGroup *associated_memory_group)
{
ARM_COMPUTE_ERROR_ON(associated_memory_group == nullptr);
ARM_COMPUTE_ERROR_ON(_associated_memory_group != nullptr);
ARM_COMPUTE_ERROR_ON(_memory.region() != nullptr && _memory.cl_region()->cl_data().get() != nullptr);
_associated_memory_group = associated_memory_group;
}
uint8_t *CLTensorAllocator::lock()
{
return map(CLScheduler::get().queue(), true);
}
void CLTensorAllocator::unlock()
{
ARM_COMPUTE_ERROR_ON(_memory.region() == nullptr);
unmap(CLScheduler::get().queue(), reinterpret_cast<uint8_t *>(_memory.region()->buffer()));
}
uint8_t *CLTensorAllocator::map(cl::CommandQueue &q, bool blocking)
{
ARM_COMPUTE_ERROR_ON(_mapping != nullptr);
ARM_COMPUTE_ERROR_ON(_memory.region() == nullptr);
ARM_COMPUTE_ERROR_ON(_memory.region()->buffer() != nullptr);
_mapping = reinterpret_cast<uint8_t *>(_memory.cl_region()->map(q, blocking));
return _mapping;
}
void CLTensorAllocator::unmap(cl::CommandQueue &q, uint8_t *mapping)
{
ARM_COMPUTE_ERROR_ON(_mapping == nullptr);
ARM_COMPUTE_ERROR_ON(_mapping != mapping);
ARM_COMPUTE_ERROR_ON(_memory.region() == nullptr);
ARM_COMPUTE_ERROR_ON(_memory.region()->buffer() == nullptr);
ARM_COMPUTE_UNUSED(mapping);
_memory.cl_region()->unmap(q);
_mapping = nullptr;
}
} // namespace arm_compute