blob: 13543dbf15c1166fc69a0d8c47133fe933161164 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph/backends/GLES/GCFunctionFactory.h"
#include "arm_compute/core/utils/misc/Cast.h"
#include "arm_compute/graph/Graph.h"
#include "arm_compute/graph/backends/FunctionHelpers.h"
#include "arm_compute/runtime/GLES_COMPUTE/GCFunctions.h"
using namespace arm_compute::utils::cast;
namespace arm_compute
{
namespace graph
{
namespace backends
{
/** Target specific information structure used to pass information to the layer templates */
struct GCTargetInfo
{
using TensorType = arm_compute::IGCTensor;
static Target TargetType;
};
Target GCTargetInfo::TargetType = Target::GC;
/** Collection of GC convolution functions */
struct GCConvolutionLayerFunctions
{
using GenericConvolutionLayer = GCConvolutionLayer;
using GEMMConvolutionLayer = GCConvolutionLayer;
using DirectConvolutionLayer = GCDirectConvolutionLayer;
};
/** Collection of GC depthwise convolution functions */
struct GCDepthwiseConvolutionLayerFunctions
{
using DepthwiseConvolutionLayer3x3 = GCDepthwiseConvolutionLayer3x3;
};
/** Collection of GC element-wise functions */
struct GCEltwiseFunctions
{
using Addition = GCArithmeticAddition;
using Multiplication = GCPixelWiseMultiplication;
};
namespace detail
{
template <>
std::unique_ptr<IFunction> create_convolution_layer<GCConvolutionLayerFunctions, GCTargetInfo>(ConvolutionLayerNode &node, GraphContext &ctx)
{
validate_node<GCTargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
GCTargetInfo::TensorType *input = get_backing_tensor<GCTargetInfo>(node.input(0));
GCTargetInfo::TensorType *weights = get_backing_tensor<GCTargetInfo>(node.input(1));
GCTargetInfo::TensorType *biases = get_backing_tensor<GCTargetInfo>(node.input(2));
GCTargetInfo::TensorType *output = get_backing_tensor<GCTargetInfo>(node.output(0));
if(is_data_type_quantized_asymmetric(input->info()->data_type()))
{
biases->info()->set_data_type(DataType::S32);
}
const PadStrideInfo conv_info = node.convolution_info();
const ConvolutionMethod conv_algorithm = node.convolution_method();
const ActivationLayerInfo fused_act = node.fused_activation();
// Create and configure function (we assume that functions have been validated before creation)
std::shared_ptr<IMemoryManager> mm = get_memory_manager(ctx, GCTargetInfo::TargetType);
std::unique_ptr<IFunction> func;
std::string func_name;
if(conv_algorithm == ConvolutionMethod::Direct)
{
std::tie(func, func_name) = create_named_function<GCConvolutionLayerFunctions::DirectConvolutionLayer>(
std::string("DirectConvolutionLayer"),
input, weights, biases, output, conv_info, fused_act);
}
else
{
std::tie(func, func_name) = create_named_memory_managed_function<GCConvolutionLayerFunctions::GenericConvolutionLayer>(
std::string("ConvolutionLayer"), mm,
input, weights, biases, output, conv_info, WeightsInfo(), Size2D(1U, 1U), fused_act);
}
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated "
<< node.name()
<< " Type: " << func_name
<< " Data Type: " << input->info()->data_type()
<< " Input QuantInfo: " << input->info()->quantization_info()
<< " Weights QuantInfo: " << weights->info()->quantization_info()
<< " Input shape: " << input->info()->tensor_shape()
<< " Weights shape: " << weights->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< (fused_act.enabled() ? " " + to_string(fused_act.activation()) : "")
<< std::endl);
return func;
}
template <>
std::unique_ptr<IFunction> create_depthwise_convolution_layer<GCDepthwiseConvolutionLayerFunctions, GCTargetInfo>(DepthwiseConvolutionLayerNode &node)
{
validate_node<GCTargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
GCTargetInfo::TensorType *input = get_backing_tensor<GCTargetInfo>(node.input(0));
GCTargetInfo::TensorType *weights = get_backing_tensor<GCTargetInfo>(node.input(1));
GCTargetInfo::TensorType *biases = get_backing_tensor<GCTargetInfo>(node.input(2));
GCTargetInfo::TensorType *output = get_backing_tensor<GCTargetInfo>(node.output(0));
if(is_data_type_quantized_asymmetric(input->info()->data_type()))
{
biases->info()->set_data_type(DataType::S32);
}
const PadStrideInfo conv_info = node.convolution_info();
const DepthwiseConvolutionMethod dwc_algorithm = node.depthwise_convolution_method();
const ActivationLayerInfo fused_act = node.fused_activation();
const int depth_multiplier = node.depth_multiplier();
// Create and configure function (we assume that functions have been validated before creation)
std::unique_ptr<IFunction> func;
std::string func_name;
if(dwc_algorithm == DepthwiseConvolutionMethod::Optimized3x3)
{
std::tie(func, func_name) = create_named_function<GCDepthwiseConvolutionLayerFunctions::DepthwiseConvolutionLayer3x3>(
std::string("DepthwiseConvolutionLayer3x3"),
input, weights, biases, output, conv_info, depth_multiplier, fused_act);
}
else
{
ARM_COMPUTE_ERROR("Generic DepthwiseConvolutionLayer is not supported in GLES backend");
}
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated "
<< node.name()
<< " Type: " << func_name
<< " Target " << GCTargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input QuantInfo: " << input->info()->quantization_info()
<< " Weights QuantInfo: " << weights->info()->quantization_info()
<< " Input shape: " << input->info()->tensor_shape()
<< " Weights shape: " << weights->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< " Depth multiplier: " << depth_multiplier
<< (fused_act.enabled() ? " " + to_string(fused_act.activation()) : "")
<< std::endl);
return func;
}
template <>
std::unique_ptr<IFunction> create_eltwise_layer<GCEltwiseFunctions, GCTargetInfo>(EltwiseLayerNode &node)
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE(
"Creating GC EltwiseLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
ARM_COMPUTE_ERROR_ON(node.num_inputs() != 2);
ARM_COMPUTE_ERROR_ON(node.num_outputs() != 1);
// Extract IO and info
GCTargetInfo::TensorType *input1 = get_backing_tensor<GCTargetInfo>(node.input(0));
GCTargetInfo::TensorType *input2 = get_backing_tensor<GCTargetInfo>(node.input(1));
GCTargetInfo::TensorType *output = get_backing_tensor<GCTargetInfo>(node.output(0));
const EltwiseOperation eltwise_op = node.eltwise_operation();
const ConvertPolicy convert_policy = node.convert_policy();
ARM_COMPUTE_ERROR_ON(input1 == nullptr);
ARM_COMPUTE_ERROR_ON(input2 == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
std::unique_ptr<IFunction> func = nullptr;
std::string func_name;
if(eltwise_op == EltwiseOperation::Add)
{
std::tie(func, func_name) = create_named_function<GCEltwiseFunctions::Addition>(
std::string("GCArithmeticAddition"),
input1, input2, output, convert_policy);
}
else if(eltwise_op == EltwiseOperation::Sub)
{
ARM_COMPUTE_ERROR("Arithmetic subtraction is not supported in GLES backend");
}
else if(eltwise_op == EltwiseOperation::Mul)
{
std::tie(func, func_name) = create_named_function<GCEltwiseFunctions::Multiplication>(
std::string("PixelWiseMultiplication"),
input1, input2, output, 1.f);
}
else
{
ARM_COMPUTE_ERROR("Unsupported element-wise operation!");
}
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated "
<< node.name()
<< " Type: " << node.type()
<< " Target: " << GCTargetInfo::TargetType
<< " Operation: " << func_name
<< " Data Type: " << input1->info()->data_type()
<< " Shape: " << input1->info()->tensor_shape()
<< std::endl);
return func;
}
} //namespace detail
std::unique_ptr<IFunction> GCFunctionFactory::create(INode *node, GraphContext &ctx)
{
if(node == nullptr)
{
return nullptr;
}
NodeType type = node->type();
switch(type)
{
case NodeType::ActivationLayer:
return detail::create_activation_layer<GCActivationLayer, GCTargetInfo>(*polymorphic_downcast<ActivationLayerNode *>(node));
case NodeType::BatchNormalizationLayer:
return detail::create_batch_normalization_layer<GCBatchNormalizationLayer, GCTargetInfo>(*polymorphic_downcast<BatchNormalizationLayerNode *>(node));
case NodeType::ConvolutionLayer:
return detail::create_convolution_layer<GCConvolutionLayerFunctions, GCTargetInfo>(*polymorphic_downcast<ConvolutionLayerNode *>(node), ctx);
case NodeType::ConcatenateLayer:
return detail::create_concatenate_layer<GCConcatenateLayer, GCTargetInfo>(*polymorphic_downcast<ConcatenateLayerNode *>(node));
case NodeType::DepthwiseConvolutionLayer:
return detail::create_depthwise_convolution_layer<GCDepthwiseConvolutionLayerFunctions, GCTargetInfo>(*polymorphic_downcast<DepthwiseConvolutionLayerNode *>(node));
case NodeType::EltwiseLayer:
return detail::create_eltwise_layer<GCEltwiseFunctions, GCTargetInfo>(*polymorphic_downcast<EltwiseLayerNode *>(node));
case NodeType::FullyConnectedLayer:
return detail::create_fully_connected_layer<GCFullyConnectedLayer, GCTargetInfo>(*polymorphic_downcast<FullyConnectedLayerNode *>(node), ctx);
case NodeType::NormalizationLayer:
return detail::create_normalization_layer<GCNormalizationLayer, GCTargetInfo>(*polymorphic_downcast<NormalizationLayerNode *>(node), ctx);
case NodeType::NormalizePlanarYUVLayer:
return detail::create_normalize_planar_yuv_layer<GCNormalizePlanarYUVLayer, GCTargetInfo>(*polymorphic_downcast<NormalizePlanarYUVLayerNode *>(node));
case NodeType::PoolingLayer:
return detail::create_pooling_layer<GCPoolingLayer, GCTargetInfo>(*polymorphic_downcast<PoolingLayerNode *>(node));
case NodeType::ResizeLayer:
return detail::create_resize_layer<GCScale, GCTargetInfo>(*polymorphic_downcast<ResizeLayerNode *>(node));
case NodeType::SoftmaxLayer:
return detail::create_softmax_layer<GCSoftmaxLayer, GCTargetInfo>(*polymorphic_downcast<SoftmaxLayerNode *>(node), ctx);
default:
return nullptr;
}
}
} // namespace backends
} // namespace graph
} // namespace arm_compute