blob: 87d2bfd8e601a007bce38a5458d5f197f652f903 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*
* NOTE: Header to be included by implementation files only.
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*/
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include "arm.hpp"
#include "impl_base.hpp"
#pragma once
using namespace neon_convolution_kernels;
namespace depthwise
{
template <
unsigned int OutputTileRows, unsigned int OutputTileCols,
unsigned int KernelRows, unsigned int KernelCols,
unsigned int StrideRows, unsigned int StrideCols
>
DepthwiseConvolution<
OutputTileRows, OutputTileCols,
KernelRows, KernelCols, StrideRows, StrideCols,
float16_t, float16_t, float16_t
>::DepthwiseConvolution(
int n_batches, int n_input_rows, int n_input_cols, int n_channels,
ActivationFunction activation,
unsigned int padding_top,
unsigned int padding_left,
unsigned int padding_bottom,
unsigned int padding_right
) : Base(
n_batches, n_input_rows, n_input_cols, n_channels, activation,
padding_top, padding_left, padding_bottom, padding_right
)
{
}
template <
unsigned int OutputTileRows, unsigned int OutputTileCols,
unsigned int KernelRows, unsigned int KernelCols,
unsigned int StrideRows, unsigned int StrideCols
>
DepthwiseConvolution<
OutputTileRows, OutputTileCols,
KernelRows, KernelCols, StrideRows, StrideCols,
float16_t, float16_t, float16_t
>::DepthwiseConvolution(
int n_batches, int n_input_rows, int n_input_cols, int n_channels,
int n_output_rows, int n_output_cols,
ActivationFunction activation,
unsigned int padding_top,
unsigned int padding_left,
unsigned int padding_bottom,
unsigned int padding_right
) : Base(
n_batches, n_input_rows, n_input_cols, n_channels,
n_output_rows, n_output_cols, activation,
padding_top, padding_left, padding_bottom, padding_right
)
{
}
template <
unsigned int OutputTileRows, unsigned int OutputTileCols,
unsigned int KernelRows, unsigned int KernelCols,
unsigned int StrideRows, unsigned int StrideCols
>
template <ActivationFunction Activation>
void DepthwiseConvolution<
OutputTileRows, OutputTileCols,
KernelRows, KernelCols, StrideRows, StrideCols,
float16_t, float16_t, float16_t
>::execute_tile(
int n_channels,
const void *weights_biases_ptr,
const float16_t *input,
const unsigned int in_row_stride,
const unsigned int in_col_stride,
float16_t *output,
const unsigned int out_row_stride,
const unsigned int out_col_stride
)
{
// Instantiate pointers
const float16_t* __restrict__ inptr_base = input;
float16_t* __restrict__ outptr_base = output;
const float16_t* __restrict__ params = static_cast<const float16_t*>(weights_biases_ptr);
// Perform the depthwise convolution
int channels_remaining = n_channels;
for (; channels_remaining >= 8; channels_remaining -= 8)
{
// Load input tile
float16x8_t u[Base::inner_tile_rows][Base::inner_tile_cols];
for (int i = 0; i < Base::inner_tile_rows; i++)
{
const float16_t* const inptr_row = inptr_base + i*in_row_stride;
for (int j = 0; j < Base::inner_tile_cols; j++)
{
u[i][j] = vld1q_f16(inptr_row + j*in_col_stride);
}
}
inptr_base += 8;
// Load weights tile
float16x8_t vbias = vld1q_f16(params);
params += 8;
float16x8_t w[KernelRows][KernelCols];
for (unsigned int i = 0; i < KernelRows; i++)
{
for (unsigned int j = 0; j < KernelCols; j++)
{
w[i][j] = vld1q_f16(params);
params += 8;
}
}
// Perform the convolution
float16x8_t v[OutputTileRows][OutputTileCols];
for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
{
for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
{
v[out_i][out_j] = vbias;
// Base co-ordinate
const int base_i = out_i * StrideRows;
const int base_j = out_j * StrideCols;
// Fill the accumulator
for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
{
const unsigned int i = base_i + in_i;
for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
{
const unsigned int j = base_j + in_j;
// v[out_i][out_j] += w[in_i][in_j] * u[i][j];
v[out_i][out_j] = vaddq_f16(v[out_i][out_j], vmulq_f16(w[in_i][in_j], u[i][j]));
}
}
// Apply the activation function
if (Activation == ActivationFunction::ReLU ||
Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = vmaxq_f16(v[out_i][out_j], vdupq_n_f16(0.0f));
}
if (Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = vminq_f16(v[out_i][out_j], vdupq_n_f16(6.0f));
}
}
}
// Store the output tile
for (unsigned int i = 0; i < OutputTileRows; i++)
{
float16_t* const outptr_row = outptr_base + i*out_row_stride;
for (unsigned int j = 0; j < OutputTileCols; j++)
{
vst1q_f16(outptr_row + j*out_col_stride, v[i][j]);
}
}
outptr_base += 8;
}
for (; channels_remaining; channels_remaining--)
{
// Load input tile
float16_t u[Base::inner_tile_rows][Base::inner_tile_cols];
for (int i = 0; i < Base::inner_tile_rows; i++)
{
const float16_t* const inptr_row = inptr_base + i*in_row_stride;
for (int j = 0; j < Base::inner_tile_cols; j++)
{
u[i][j] = *(inptr_row + j*in_col_stride);
}
}
inptr_base++;
// Load weights tile
float16_t bias = *(params++);
float16_t w[KernelRows][KernelCols];
for (unsigned int i = 0; i < KernelRows; i++)
{
for (unsigned int j = 0; j < KernelCols; j++)
{
w[i][j] = *(params++);
}
}
// Perform the convolution
float16_t v[OutputTileRows][OutputTileCols];
for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
{
for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
{
// Clear the accumulator
v[out_i][out_j] = bias;
// Base co-ordinate
const int base_i = out_i * StrideRows;
const int base_j = out_j * StrideCols;
// Fill the accumulator
for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
{
const unsigned int i = base_i + in_i;
for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
{
const int j = base_j + in_j;
v[out_i][out_j] += w[in_i][in_j] * u[i][j];
}
}
// Apply the activation function
if (Activation == ActivationFunction::ReLU ||
Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = std::max<float16_t>(0.0f, v[out_i][out_j]);
}
if (Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = std::min<float16_t>(6.0f, v[out_i][out_j]);
}
}
}
// Store the output tile
for (unsigned int i = 0; i < OutputTileRows; i++)
{
float16_t* const outptr_row = outptr_base + i*out_row_stride;
for (unsigned int j = 0; j < OutputTileCols; j++)
{
*(outptr_row + j*out_col_stride) = v[i][j];
}
}
outptr_base++;
}
}
template <
unsigned int OutputTileRows, unsigned int OutputTileCols,
unsigned int KernelRows, unsigned int KernelCols,
unsigned int StrideRows, unsigned int StrideCols
>
template <ActivationFunction Activation>
void DepthwiseConvolution<
OutputTileRows, OutputTileCols,
KernelRows, KernelCols, StrideRows, StrideCols,
float16_t, float16_t, float16_t
>::execute_tile(
int n_channels,
const void *weights_biases_ptr,
const float16_t * inptrs[Base::inner_tile_rows][Base::inner_tile_cols],
float16_t *outptrs[Base::output_tile_rows][Base::output_tile_cols]
)
{
// Instantiate pointers
const float16_t* __restrict__ params = static_cast<const float16_t*>(weights_biases_ptr);
int n = 0;
// Perform the depthwise convolution
int channels_remaining = n_channels;
for (; channels_remaining >= 8; channels_remaining -= 8, n += 8)
{
// Load input tile
float16x8_t u[Base::inner_tile_rows][Base::inner_tile_cols];
for (int i = 0; i < Base::inner_tile_rows; i++)
{
for (int j = 0; j < Base::inner_tile_cols; j++)
{
u[i][j] = vld1q_f16(inptrs[i][j] + n);
}
}
// Load weights tile
float16x8_t vbias = vld1q_f16(params);
params += 8;
float16x8_t w[KernelRows][KernelCols];
for (unsigned int i = 0; i < KernelRows; i++)
{
for (unsigned int j = 0; j < KernelCols; j++)
{
w[i][j] = vld1q_f16(params);
params += 8;
}
}
// Perform the convolution
float16x8_t v[OutputTileRows][OutputTileCols];
for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
{
for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
{
v[out_i][out_j] = vbias;
// Base co-ordinate
const int base_i = out_i * StrideRows;
const int base_j = out_j * StrideCols;
// Fill the accumulator
for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
{
const unsigned int i = base_i + in_i;
for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
{
const unsigned int j = base_j + in_j;
// v[out_i][out_j] += w[in_i][in_j] * u[i][j];
v[out_i][out_j] = vaddq_f16(v[out_i][out_j], vmulq_f16(w[in_i][in_j], u[i][j]));
}
}
// Apply the activation function
if (Activation == ActivationFunction::ReLU ||
Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = vmaxq_f16(v[out_i][out_j], vdupq_n_f16(0.0f));
}
if (Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = vminq_f16(v[out_i][out_j], vdupq_n_f16(6.0f));
}
}
}
// Store the output tile
for (unsigned int i = 0; i < OutputTileRows; i++)
{
for (unsigned int j = 0; j < OutputTileCols; j++)
{
vst1q_f16(outptrs[i][j] + n, v[i][j]);
}
}
}
for (; channels_remaining; channels_remaining--, n++)
{
// Load input tile
float16_t u[Base::inner_tile_rows][Base::inner_tile_cols];
for (int i = 0; i < Base::inner_tile_rows; i++)
{
for (int j = 0; j < Base::inner_tile_cols; j++)
{
u[i][j] = *(inptrs[i][j] + n);
}
}
// Load weights tile
float16_t bias = *(params++);
float16_t w[KernelRows][KernelCols];
for (unsigned int i = 0; i < KernelRows; i++)
{
for (unsigned int j = 0; j < KernelCols; j++)
{
w[i][j] = *(params++);
}
}
// Perform the convolution
float16_t v[OutputTileRows][OutputTileCols];
for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
{
for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
{
// Clear the accumulator
v[out_i][out_j] = bias;
// Base co-ordinate
const int base_i = out_i * StrideRows;
const int base_j = out_j * StrideCols;
// Fill the accumulator
for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
{
const unsigned int i = base_i + in_i;
for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
{
const int j = base_j + in_j;
v[out_i][out_j] += w[in_i][in_j] * u[i][j];
}
}
// Apply the activation function
if (Activation == ActivationFunction::ReLU ||
Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = std::max<float16_t>(0.0f, v[out_i][out_j]);
}
if (Activation == ActivationFunction::ReLU6)
{
v[out_i][out_j] = std::min<float16_t>(6.0f, v[out_i][out_j]);
}
}
}
// Store the output tile
for (unsigned int i = 0; i < OutputTileRows; i++)
{
for (unsigned int j = 0; j < OutputTileCols; j++)
{
*(outptrs[i][j] + n) = v[i][j];
}
}
}
}
} // namespace depthwise
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC