blob: 5e67bc9c0e9f4794ded6a9eaec870dfd7b8de9bd [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "arm_gemm.hpp"
#include "barrier.hpp"
#include "gemm_implementation.hpp"
#include "quantized.hpp"
namespace arm_gemm {
/* Quantized wrapper - do an integer GEMM and wrap around the quantization. */
template<typename To, typename Tr, typename Tgemm>
class QuantizeWrapper : public GemmCommon<To, Tr> {
private:
UniqueGemmCommon<To, Tgemm> _subgemm = nullptr;
int32_t *_row_sums = nullptr;
int32_t *_col_sums = nullptr;
ARequantizeLayer32 _params;
GemmArgs<Tr> _args;
barrier _barrier;
void *working_space = nullptr;
bool arrays_set = false;
/* We need a subgemm which outputs the 32-bit intermediates - how much space is needed for that? */
size_t subgemm_output_size() const {
return (_args._Msize * _args._Nsize * _args._nbatches * _args._nmulti * sizeof(int32_t));
}
size_t col_sum_size() const {
return (_args._Nsize * _args._nmulti * sizeof(int32_t));
}
size_t row_sum_size() const {
return (_args._Msize * _args._nbatches * _args._nmulti * sizeof(int32_t));
}
/* Local working space: We need space for the subgemm output (above) and
* the row sums. If the GEMM is not pretransposed we need to store the
* column sums here too. */
size_t local_working_size() const {
size_t sz = subgemm_output_size() + row_sum_size();
if (_args._pretransposed_hint) {
return sz;
}
return sz + col_sum_size();
}
void set_child_arrays() {
if (working_space == nullptr || arrays_set == false)
return;
/* Use the first part of our working space for the subgemm result, pass the operand details straight through. */
_subgemm->set_arrays(this->_Aptr, this->_lda, this->_A_batch_stride, this->_A_multi_stride,
this->_Bptr, this->_ldb, this->_B_multi_stride,
reinterpret_cast<Tgemm *>(working_space), _args._Nsize, (_args._Nsize * _args._Msize), (_args._Nsize * _args._Msize * _args._nbatches));
}
void col_sums_pretransposed(const To *B, const int ldb, const int B_multi_stride) {
for (unsigned int multi=0; multi<_args._nmulti; multi++) {
compute_col_sums(_params, _args._Nsize, _args._Ksize, B + (multi * B_multi_stride), ldb, _col_sums + (multi * _args._Nsize), _args._Ksize, 0);
}
}
void col_sums_runtime(unsigned int threadid) {
unsigned int first_col = (threadid * _args._Nsize) / _args._maxthreads;
unsigned int last_col = ((threadid + 1) * _args._Nsize) / _args._maxthreads;
for (unsigned int multi=0; multi<_args._nmulti; multi++) {
compute_col_sums(_params, (last_col - first_col), _args._Ksize, this->_Bptr + (multi * this->_B_multi_stride) + first_col, this->_ldb, _col_sums + (multi * _args._Nsize) + first_col, _args._Ksize, first_col);
}
}
void requantize_runtime(unsigned int threadid) {
unsigned int first_row = (threadid * _args._Msize) / _args._maxthreads;
unsigned int last_row = ((threadid+1) * _args._Msize) / _args._maxthreads;
for (unsigned int multi=0; multi<_args._nmulti; multi++) {
for (unsigned int batch=0; batch<_args._nbatches; batch++) {
/* Compute row sums now */
compute_row_sums(_params, _args._Ksize, (last_row - first_row), this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (first_row * this->_lda),
this->_lda, _row_sums + (multi * _args._nbatches * _args._Msize) + (batch * _args._Msize) + first_row);
// If we don't care about negative values, call the version of this function that doesn't correct before shifting.
// 'c_offset' represents zero, so if the lowest possible quantized output value is the same or more than that we will not output negative numbers.
requantize_block_32(_params, _args._Nsize, (last_row - first_row),
reinterpret_cast<Tgemm *>(working_space) + (multi * (_args._Msize * _args._Nsize * _args._nbatches)) + (batch * (_args._Msize * _args._Nsize)) + (first_row * _args._Nsize),
_args._Nsize,
this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (first_row * this->_ldc), this->_ldc,
_row_sums + (multi * _args._nbatches * _args._Msize) + (batch * _args._Msize) + first_row,
_col_sums + (multi * _args._Nsize));
}
}
}
public:
QuantizeWrapper(const GemmArgs<Tr> &args, const ARequantizeLayer32 &qp) : _params(qp), _args(args), _barrier(args._maxthreads) {
GemmArgs<Tgemm> newargs = GemmArgs<Tgemm>(args._ci, args._Msize, args._Nsize, args._Ksize, args._nbatches, args._nmulti, args._trA, args._trB, 1, 0, args._maxthreads, args._pretransposed_hint, nullptr);
_subgemm = gemm<To, Tgemm>(newargs);
if (_subgemm == nullptr) {
return;
}
if (!_subgemm->B_is_pretransposed()) {
_args._pretransposed_hint = false;
}
}
QuantizeWrapper(const QuantizeWrapper &) = delete;
QuantizeWrapper &operator=(const QuantizeWrapper &) = delete;
QuantizeWrapper(QuantizeWrapper &&) = default;
QuantizeWrapper &operator=(QuantizeWrapper &&) = default;
void set_arrays(const To *A, const int lda, const int A_batch_stride, const int A_multi_stride,
const To *B, const int ldb, const int B_multi_stride,
Tr *C, const int ldc, const int C_batch_stride, const int C_multi_stride) override {
GemmCommon<To, Tr>::set_arrays(A, lda, A_batch_stride, A_multi_stride, B, ldb, B_multi_stride, C, ldc, C_batch_stride, C_multi_stride);
arrays_set = true;
set_child_arrays();
}
unsigned int get_window_size() const override {
return _subgemm->get_window_size();
}
void set_nthreads(int nthreads) override {
_subgemm->set_nthreads(nthreads);
_barrier.set_nthreads(nthreads);
_args._maxthreads = nthreads;
}
void execute(unsigned int start, unsigned int end, int threadid) override {
_subgemm->execute(start, end, threadid);
if (!_args._pretransposed_hint) {
col_sums_runtime(threadid);
}
_barrier.arrive_and_wait();
requantize_runtime(threadid);
}
size_t get_working_size() const override {
return _subgemm->get_working_size() + local_working_size();
}
// Space arrangement:
// ptr
// V
// | subgemm output | row_sums | col_sums (if not pretransposed | subgemm working space |
void set_working_space(void *space) override {
uintptr_t space_int = reinterpret_cast<uintptr_t>(space);
working_space = space;
_subgemm->set_working_space(reinterpret_cast<void *>(space_int + local_working_size()));
_row_sums = reinterpret_cast<int32_t *>(space_int + subgemm_output_size());
if (!_args._pretransposed_hint) {
_col_sums = reinterpret_cast<int32_t *>(space_int + subgemm_output_size() + row_sum_size());
}
set_child_arrays();
}
bool B_is_pretransposed() const override {
/* We clear this flag if the subgemm isn't pretransposed, so just return its value */
return _args._pretransposed_hint;
}
bool B_pretranspose_required() const override {
return _subgemm->B_pretranspose_required();
}
size_t get_B_pretransposed_array_size() const override {
if (_args._pretransposed_hint) {
return _subgemm->get_B_pretransposed_array_size() + col_sum_size();
}
return 0;
}
void pretranspose_B_array(void *buffer, const To *B, const int ldb, const int B_multi_stride) override {
if (!_args._pretransposed_hint) {
return;
}
uintptr_t buffer_int = reinterpret_cast<uintptr_t>(buffer);
_subgemm->pretranspose_B_array(reinterpret_cast<void *>(buffer_int + col_sum_size()), B, ldb, B_multi_stride);
_col_sums = reinterpret_cast<int32_t *>(buffer);
col_sums_pretransposed(B, ldb, B_multi_stride);
}
void set_pretransposed_B_data(void *buffer) override {
if (!_args._pretransposed_hint) {
return;
}
uintptr_t buffer_int = reinterpret_cast<uintptr_t>(buffer);
_subgemm->set_pretransposed_B_data(reinterpret_cast<void *>(buffer_int + col_sum_size()));
_col_sums = reinterpret_cast<int32_t *>(buffer);
}
void set_quantized_bias(const int32_t *bias) override {
_params.bias = bias;
}
};
} // namespace arm_gemm