blob: 62c9ca0d5ea7800640914f272d504974d443d19f [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEPoolingLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"
#include <algorithm>
#include <arm_neon.h>
#include <cmath>
#include <limits>
#include <set>
#include <string>
#include <tuple>
using namespace arm_compute;
using namespace misc::shape_calculator;
namespace
{
inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
const unsigned int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
int start_x = id[idx_width] * stride_x - pad_x;
int start_y = id[idx_height] * stride_y - pad_y;
const int end_x = std::min(start_x + pool_size_x, upper_bound_w);
const int end_y = std::min(start_y + pool_size_y, upper_bound_h);
if(exclude_padding)
{
start_x = std::max(0, start_x);
start_y = std::max(0, start_y);
}
return 1.f / ((end_y - start_y) * (end_x - start_x));
}
inline void scale_vector_s16x8(bool exclude_padding, uint16x8_t &v, const Coordinates &id, int id_offset, int step,
const int pool_size, const int upper_bound_w, const int upper_bound_h,
const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
int start_x = (id.x() + id_offset) * stride_x - pad_x;
int start_y = id.y() * stride_y - pad_y;
const int end_y = std::min(start_y + pool_size, upper_bound_h);
if(exclude_padding)
{
start_y = std::max(0, start_y);
}
std::array<uint16_t, 8> elems =
{
{
vgetq_lane_u16(v, 0),
vgetq_lane_u16(v, 1),
vgetq_lane_u16(v, 2),
vgetq_lane_u16(v, 3),
vgetq_lane_u16(v, 4),
vgetq_lane_u16(v, 5),
vgetq_lane_u16(v, 6),
vgetq_lane_u16(v, 7),
}
};
for(auto &el : elems)
{
int c_start_x = start_x;
const int end_x = std::min(c_start_x + pool_size, upper_bound_w);
if(exclude_padding)
{
c_start_x = std::max(0, c_start_x);
}
float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
el *= scale;
start_x += step * stride_x;
}
v = vsetq_lane_u16(elems[0], v, 0);
v = vsetq_lane_u16(elems[1], v, 1);
v = vsetq_lane_u16(elems[2], v, 2);
v = vsetq_lane_u16(elems[3], v, 3);
v = vsetq_lane_u16(elems[4], v, 4);
v = vsetq_lane_u16(elems[5], v, 5);
v = vsetq_lane_u16(elems[6], v, 6);
v = vsetq_lane_u16(elems[7], v, 7);
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, unsigned int &pooled_w, unsigned int pooled_h)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
int pool_stride_x = 0;
int pool_stride_y = 0;
PoolingType pool_type = pool_info.pool_type();
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(input->data_type()));
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
ARM_COMPUTE_RETURN_ERROR_ON((output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH)) != pooled_w)
|| (output->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT)) != pooled_h));
}
return Status{};
}
Status validate_arguments_pool_info(const unsigned int pool_size_x, const unsigned int pool_size_y)
{
ARM_COMPUTE_RETURN_ERROR_ON(pool_size_x == 0);
ARM_COMPUTE_RETURN_ERROR_ON(pool_size_y == 0);
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info, unsigned int &num_elems_processed_per_iteration,
BorderSize &border_size,
unsigned int pooled_w, unsigned int pooled_h, int pool_size_x, int pool_size_y)
{
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_pool_shape(*input, pool_info)));
DataLayout data_layout = input->data_layout();
unsigned int num_elems_read_per_iteration = 0;
unsigned int num_elems_horizontal_window = 0;
int pool_stride_x = 0;
int pool_stride_y = 0;
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const int input_width = input->dimension(idx_width);
const int input_height = input->dimension(idx_height);
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
const int pool_pad_right = pad_stride_info.pad_right();
const int pool_pad_top = pad_stride_info.pad_top();
const int pool_pad_left = pad_stride_info.pad_left();
const int pool_pad_bottom = pad_stride_info.pad_bottom();
const bool is_square = pool_size_x == pool_size_y;
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
input->dimension(idx_height),
pool_size_x,
pool_size_y,
pad_stride_info);
//If it's not squared and optimized will be executed the MxN
num_elems_read_per_iteration = 1;
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
const bool is_nhwc = data_layout == DataLayout::NHWC;
if(is_square)
{
switch(input->data_type())
{
case DataType::QASYMM8:
if(is_nhwc)
{
num_elems_processed_per_iteration = 16;
break;
}
switch(pool_size_x)
{
case 2:
num_elems_read_per_iteration = 16;
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
break;
case 3:
num_elems_read_per_iteration = 16;
num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
num_elems_horizontal_window = (pool_stride_x == 2) ? 8 : 16;
break;
default:
break;
}
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
if(is_nhwc)
{
num_elems_processed_per_iteration = 8;
break;
}
switch(pool_size_x)
{
case 2:
case 3:
num_elems_read_per_iteration = 4;
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
break;
default:
break;
}
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
if(is_nhwc)
{
num_elems_processed_per_iteration = 4;
break;
}
switch(pool_size_x)
{
case 2:
num_elems_read_per_iteration = 2;
break;
case 3:
num_elems_read_per_iteration = 4; // We use vload4 for pooling3
break;
case 7:
num_elems_read_per_iteration = 8; // We use vload8 for pooling7
break;
default:
break;
}
num_elems_processed_per_iteration = 1;
num_elems_horizontal_window = 1;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
else
{
if(is_nhwc)
{
num_elems_processed_per_iteration = 16 / input->element_size();
}
}
bool window_changed = false;
Window win{};
if(data_layout == DataLayout::NCHW)
{
// Number of iterations in X dimension
const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
// Upper limit for the number of right/bottom border elements that are accessed
const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - input_width;
const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - input_height;
border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
border_size.right = std::max(upper_bound_w, pool_pad_right);
border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
TensorShape output_shape{ input->tensor_shape() };
output_shape.set(0, pooled_w);
output_shape.set(1, pooled_h);
TensorInfo output_info(input->clone()->set_tensor_shape(output_shape));
win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration));
AccessWindowStatic input_access(input, -pool_pad_left, -pool_pad_top, input_width + border_size.right, input_height + border_size.bottom);
AccessWindowHorizontal output_access(output, 0, num_elems_horizontal_window);
window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
else
{
TensorShape output_shape{ input->tensor_shape() };
output_shape.set(1, pooled_w);
output_shape.set(2, pooled_h);
TensorInfo output_info(input->clone()->set_tensor_shape(output_shape));
win = calculate_max_window(output_info, Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
window_changed = update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
NEPoolingLayerKernel::NEPoolingLayerKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _pool_info(), _num_elems_processed_per_iteration(0), _border_size(0), _is_square(false)
{
}
BorderSize NEPoolingLayerKernel::border_size() const
{
return _border_size;
}
void NEPoolingLayerKernel::configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
const PadStrideInfo pad_stride_info = pool_info.pad_stride_info();
const bool is_global_pooling = pool_info.is_global_pooling();
const int pool_stride_x = pad_stride_info.stride().first;
// Get data layout
const DataLayout data_layout = input->info()->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
// Update pool size in case of global pooling
const Size2D pool_size(
is_global_pooling ? input->info()->dimension(idx_width) : pool_info.pool_size().width,
is_global_pooling ? input->info()->dimension(idx_height) : pool_info.pool_size().height);
// Validate pool info before calling scaled_dimensions
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_pool_info(pool_size.x(), pool_size.y()));
// Check output dimensions
unsigned int pooled_w;
unsigned int pooled_h;
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(idx_width),
input->info()->dimension(idx_height),
pool_size.x(),
pool_size.y(),
pad_stride_info);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, pooled_w, pooled_h));
// Set instance variables
_input = input;
_output = output;
_pool_info = pool_info;
_is_square = (pool_size.x() == pool_size.y());
// Get data type
const DataType data_type = input->info()->data_type();
const bool is_nchw = data_layout == DataLayout::NCHW;
if(data_type == DataType::QASYMM8)
{
if(pool_size.x() == 2 && pool_stride_x < 3 && _is_square)
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::pooling2_qasymm8_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc;
}
}
else if(pool_size.x() == 3 && pool_stride_x < 3 && _is_square)
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::pooling3_qasymm8_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc;
}
}
else
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc;
}
}
}
else if(data_type == DataType::F16)
{
if(_is_square)
{
switch(pool_size.x())
{
case 2:
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::pooling2_f16_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc;
}
}
break;
case 3:
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::pooling3_f16_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc;
}
}
break;
default:
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc;
}
break;
}
break;
}
}
else
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f16_nhwc;
}
}
}
else if(data_type == DataType::F32)
{
if(_is_square)
{
switch(pool_size.x())
{
case 2:
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::pooling2_f32_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
}
break;
}
case 3:
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::pooling3_f32_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
}
break;
}
case 7:
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::pooling7_f32_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
}
break;
}
default:
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
}
break;
}
}
}
else
{
if(is_nchw)
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nchw;
}
else
{
_func = &NEPoolingLayerKernel::poolingMxN_f32_nhwc;
}
}
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info, _num_elems_processed_per_iteration, _border_size, pooled_w, pooled_h, pool_size.x(), pool_size.y());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
void NEPoolingLayerKernel::pooling2_qasymm8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
int pool_stride_x = 0;
int pool_stride_y = 0;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
const UniformQuantizationInfo input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo output_qinfo = _output->info()->quantization_info().uniform();
const bool have_different_qinfo = input_qinfo != output_qinfo;
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_top_ptr + input.offset()));
const auto bottom_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_bottom_ptr + input.offset()));
uint8x8_t lower_res = {};
uint8x8_t upper_res = {};
if(pooling_type != PoolingType::MAX)
{
const uint16x8x2_t top_data_u16 = { { vmovl_u8(vget_low_u8(top_data)), vmovl_u8(vget_high_u8(top_data)) } };
const uint16x8x2_t bottom_data_u16 = { { vmovl_u8(vget_low_u8(bottom_data)), vmovl_u8(vget_high_u8(bottom_data)) } };
// Add rows
const uint16x8x2_t vrsum =
{
{
vaddq_u16(top_data_u16.val[0], bottom_data_u16.val[0]),
vaddq_u16(top_data_u16.val[1], bottom_data_u16.val[1]),
}
};
// Pair-wise add row data
const uint16x4x2_t vpsum =
{
{
vpadd_u16(vget_low_u16(vrsum.val[0]), vget_high_u16(vrsum.val[0])),
vpadd_u16(vget_low_u16(vrsum.val[1]), vget_high_u16(vrsum.val[1])),
}
};
uint16x8_t res_lower = vcombine_u16(vpsum.val[0], vpsum.val[1]);
// Scale lower result
scale_vector_s16x8(exclude_padding, res_lower, id, 0, scale_step_x,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
lower_res = vmovn_u16(res_lower);
// Compute upper result for stride_x == 1
if(pool_stride_x == 1)
{
// Shifted row sum
const uint16x8x2_t vrsum_shifted =
{
{
vextq_u16(vrsum.val[0], vrsum.val[1], 1),
vextq_u16(vrsum.val[1], vrsum.val[1], 1)
}
};
// Pair-wise add shifted row
const uint16x4x2_t vpsum_shifted =
{
{
vpadd_u16(vget_low_u16(vrsum_shifted.val[0]), vget_high_u16(vrsum_shifted.val[0])),
vpadd_u16(vget_low_u16(vrsum_shifted.val[1]), vget_high_u16(vrsum_shifted.val[1])),
}
};
uint16x8_t res_upper = vcombine_u16(vpsum_shifted.val[0], vpsum_shifted.val[1]);
// Scale lower result
scale_vector_s16x8(exclude_padding, res_upper, id, 1, 2,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
upper_res = vmovn_u16(res_upper);
}
}
else
{
const uint8x16_t max_data = vmaxq_u8(top_data, bottom_data);
lower_res = vpmax_u8(vget_low_u8(max_data), vget_high_u8(max_data));
if(pool_stride_x == 1)
{
const uint8x16_t max_data_shifted = vextq_u8(max_data, max_data, 1);
upper_res = vpmax_u8(vget_low_u8(max_data_shifted), vget_high_u8(max_data_shifted));
}
}
if(have_different_qinfo)
{
const auto requantized_output = vquantize(vdequantize(vcombine_u8(lower_res, upper_res), input_qinfo), output_qinfo);
lower_res = vget_low_u8(requantized_output);
upper_res = vget_high_u8(requantized_output);
}
// Store result
if(pool_stride_x == 1)
{
const uint8x8x2_t res = { { lower_res, upper_res } };
vst2_u8(reinterpret_cast<uint8_t *>(output.ptr()), res);
}
else
{
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr()), lower_res);
}
},
input, output);
}
void NEPoolingLayerKernel::pooling3_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
float16x4_t middle_data = vld1_f16(reinterpret_cast<const float16_t *>(input_middle_ptr + input.offset()));
float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
middle_data = vmul_f16(middle_data, middle_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
// Perform pooling
const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
res = vmul_f16(vpadd_f16(res, res), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
res = vpmax_f16(vset_lane_f16(-std::numeric_limits<float>::max(), max_data, 3), max_data);
res = vpmax_f16(res, res);
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = vinv_f16(vinvsqrt_f16(res));
}
*(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
void NEPoolingLayerKernel::pooling2_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x, pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const unsigned char *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
float16x4_t top_data = vld1_f16(reinterpret_cast<const float16_t *>(input_top_ptr + input.offset()));
float16x4_t bottom_data = vld1_f16(reinterpret_cast<const float16_t *>(input_bottom_ptr + input.offset()));
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(top_data, bottom_data);
res = vpmax_f16(max_data, max_data);
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = vinv_f16(vinvsqrt_f16(res));
}
// Store result
*(reinterpret_cast<float16_t *>(output.ptr())) = vget_lane_f16(res, 0);
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
void NEPoolingLayerKernel::pooling3_qasymm8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const UniformQuantizationInfo &input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto top_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_top_ptr + input.offset()));
const auto middle_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_middle_ptr + input.offset()));
const auto bottom_data = vld1q_u8(reinterpret_cast<const uint8_t *>(input_bottom_ptr + input.offset()));
uint8x8_t fres = {};
uint8x16_t fqres = {};
if(pooling_type == PoolingType::AVG)
{
// Convert data to u16
const uint16x8x2_t top_data_u16 = { { vmovl_u8(vget_low_u8(top_data)), vmovl_u8(vget_high_u8(top_data)) } };
const uint16x8x2_t middle_data_u16 = { { vmovl_u8(vget_low_u8(middle_data)), vmovl_u8(vget_high_u8(middle_data)) } };
const uint16x8x2_t bottom_data_u16 = { { vmovl_u8(vget_low_u8(bottom_data)), vmovl_u8(vget_high_u8(bottom_data)) } };
// Calculate row sums
const uint16x8x2_t vrsum =
{
{
vaddq_u16(vaddq_u16(top_data_u16.val[0], bottom_data_u16.val[0]), middle_data_u16.val[0]),
vaddq_u16(vaddq_u16(top_data_u16.val[1], bottom_data_u16.val[1]), middle_data_u16.val[1]),
}
};
const uint16x8x2_t vrsum_shifted_1 =
{
{
vextq_u16(vrsum.val[0], vrsum.val[1], 1),
vextq_u16(vrsum.val[1], vrsum.val[1], 1)
}
};
const uint16x8x2_t vrsum_shifted_2 =
{
{
vextq_u16(vrsum.val[0], vrsum.val[1], 2),
vextq_u16(vrsum.val[1], vrsum.val[1], 2)
}
};
// Calculate final sum
uint16x8x2_t final_sum =
{
{
vaddq_u16(vaddq_u16(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
vaddq_u16(vaddq_u16(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
}
};
if(pool_stride_x == 2)
{
uint16x8_t res =
{
vgetq_lane_u16(final_sum.val[0], 0),
vgetq_lane_u16(final_sum.val[0], 2),
vgetq_lane_u16(final_sum.val[0], 4),
vgetq_lane_u16(final_sum.val[0], 6),
vgetq_lane_u16(final_sum.val[1], 0),
vgetq_lane_u16(final_sum.val[1], 2),
vgetq_lane_u16(final_sum.val[1], 4),
vgetq_lane_u16(final_sum.val[1], 6),
};
scale_vector_s16x8(exclude_padding, res, id, 0, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
fres = vmovn_u16(res);
}
else
{
// Scale lower result
scale_vector_s16x8(exclude_padding, final_sum.val[0], id, 0, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Scale lower result
scale_vector_s16x8(exclude_padding, final_sum.val[1], id, 8, 1,
pool_size, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
fqres = vcombine_u8(vmovn_u16(final_sum.val[0]), vmovn_u16(final_sum.val[1]));
}
}
else
{
const uint8x16_t max_data = vmaxq_u8(vmaxq_u8(top_data, bottom_data), middle_data);
const uint8x16_t max_data_shift1 = vextq_u8(max_data, max_data, 1);
const uint8x16_t max_data_shift2 = vextq_u8(max_data, max_data, 2);
const uint8x16_t final_max = vmaxq_u8(vmaxq_u8(max_data, max_data_shift1), max_data_shift2);
if(pool_stride_x == 2)
{
const uint8x8x2_t table = { { vget_low_u8(final_max), vget_high_u8(final_max) } };
static const uint8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
fres = vtbl2_u8(table, lookup_val);
}
else
{
fqres = final_max;
}
}
// Store result
if(pool_stride_x == 1)
{
if(input_qinfo != output_qinfo)
{
fqres = vquantize(vdequantize(fqres, input_qinfo), output_qinfo);
}
vst1q_u8(reinterpret_cast<uint8_t *>(output.ptr()), fqres);
}
else
{
if(input_qinfo != output_qinfo)
{
fres = vquantize(vdequantize(fres, input_qinfo), output_qinfo);
}
vst1_u8(reinterpret_cast<uint8_t *>(output.ptr()), fres);
}
},
input, output);
}
void NEPoolingLayerKernel::poolingMxN_f16_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size().width;
const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().height;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
float16_t res = 0.0f;
float16x8_t vres = vdupq_n_f16(0.0f);
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vaddq_f16(vres, vmulq_f16(data, data));
}
else
{
vres = vaddq_f16(vres, data);
}
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
// Reduction
float16x4_t tmp = vpadd_f16(vget_high_f16(vres), vget_low_f16(vres));
res += vget_lane_f16(tmp, 0);
res += vget_lane_f16(tmp, 1);
res += vget_lane_f16(tmp, 2);
res += vget_lane_f16(tmp, 3);
// Divide by scale
res *= scale;
}
else
{
float16x8_t vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
res = std::numeric_limits<float>::lowest();
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
vres = vmaxq_f16(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const float16_t data = *(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
res = std::max(res, data);
}
}
float16x4_t tmp = vpmax_f16(vget_high_f16(vres), vget_low_f16(vres));
res = std::max(res, vget_lane_f16(tmp, 0));
res = std::max(res, vget_lane_f16(tmp, 1));
res = std::max(res, vget_lane_f16(tmp, 2));
res = std::max(res, vget_lane_f16(tmp, 3));
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float16_t *>(output.ptr())) = res;
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
void NEPoolingLayerKernel::poolingMxN_f16_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
ARM_COMPUTE_UNUSED(pooling_type);
ARM_COMPUTE_UNUSED(exclude_padding);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().width;
const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().z() : _pool_info.pool_size().height;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
float16x8_t vres;
execute_window_loop(window, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float16x8_t scale_v = vdupq_n_f16(scale);
// Perform pooling
vres = vdupq_n_f16(0.0f);
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().z()));
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vaddq_f16(vres, vmulq_f16(data, data));
}
else
{
vres = vaddq_f16(vres, data);
}
}
}
// Divide by scale
vres = vmulq_f16(vres, scale_v);
}
else
{
vres = vdupq_n_f16(std::numeric_limits<float>::lowest());
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float16x8_t data = vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().z()));
vres = vmaxq_f16(vres, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal));
}
// Store result
vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()), vres);
},
input, output);
#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
ARM_COMPUTE_UNUSED(window_input);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_ERROR("FP16 Not supported! Recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
void NEPoolingLayerKernel::poolingMxN_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size().width;
const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().height;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
execute_window_loop(window, [&](const Coordinates & id)
{
float res = 0.0f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
float32x4_t vres = vdupq_n_f32(0.0f);
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vmlaq_f32(vres, data, data);
}
else
{
vres = vaddq_f32(vres, data);
}
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res += vaddvq_f32(vres);
#else // __aarch64__
// Reduction
float32x2_t tmp = vpadd_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpadd_f32(tmp, tmp);
res += vget_lane_f32(tmp, 0);
#endif // __aarch64__
// Divide by scale
res *= scale;
}
else
{
float32x4_t vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
res = std::numeric_limits<float>::lowest();
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 4); x += 4)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
vres = vmaxq_f32(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const float data = *(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
res = std::max(res, data);
}
}
#if defined(__aarch64__)
// Reduction operation available on 64 bit architectures only
res = std::max(vmaxvq_f32(vres), res);
#else // __aarch64__
float32x2_t tmp = vpmax_f32(vget_high_f32(vres), vget_low_f32(vres));
tmp = vpmax_f32(tmp, tmp);
res = std::max(res, vget_lane_f32(tmp, 0));
#endif // __aarch64__
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = res;
},
input, output);
}
void NEPoolingLayerKernel::pooling2_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr int pool_size = 2;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
float32x2_t top_data = vld1_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
float32x2_t bottom_data = vld1_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmul_f32(top_data, top_data);
bottom_data = vmul_f32(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
}
else
{
const float32x2_t max_data = vmax_f32(top_data, bottom_data);
res = vpmax_f32(max_data, max_data);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
void NEPoolingLayerKernel::pooling3_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 3;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const uint8_t *const input_top_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
float32x4_t top_data = vld1q_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(input_middle_ptr + input.offset()));
float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
top_data = vmulq_f32(top_data, top_data);
middle_data = vmulq_f32(middle_data, middle_data);
bottom_data = vmulq_f32(bottom_data, bottom_data);
}
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
void NEPoolingLayerKernel::pooling7_f32_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
constexpr const int pool_size = 7;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
std::array<const uint8_t *, pool_size> input_ptrs{ {} };
for(int i = 0; i < pool_size; ++i)
{
input_ptrs[i] = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
}
execute_window_loop(window, [&](const Coordinates & id)
{
float32x2_t res = {};
float final_res = 0.f;
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
for(int i = 1; i < pool_size; ++i)
{
data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
// Get power of 2 in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
sum_data = vaddq_f32(sum_data, data.val[0]);
sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
}
res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
float32x4x2_t max_data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[0] + input.offset()));
for(int i = 1; i < pool_size; ++i)
{
const float32x4x2_t data = vld2q_f32(reinterpret_cast<const float *>(input_ptrs[i] + input.offset()));
max_data = vmax2q_f32(max_data, data);
}
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data.val[1], 3)), vget_low_f32(max_data.val[1]));
res = vpmax_f32(res, vpmax_f32(vget_high_f32(max_data.val[0]), vget_low_f32(max_data.val[0])));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(output.ptr())) = final_res;
},
input, output);
}
void NEPoolingLayerKernel::poolingMxN_f32_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().width;
const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().z() : _pool_info.pool_size().height;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
float32x4_t vres;
execute_window_loop(window, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
if(pooling_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x4_t scale_v = vdupq_n_f32(scale);
// Perform pooling
vres = vdupq_n_f32(0.0f);
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().z()));
// Get power of 2 in case of l2 pooling and accumulate
if(pooling_type == PoolingType::L2)
{
vres = vmlaq_f32(vres, data, data);
}
else
{
vres = vaddq_f32(vres, data);
}
}
}
// Divide by scale
vres = vmulq_f32(vres, scale_v);
}
else
{
vres = vdupq_n_f32(std::numeric_limits<float>::lowest());
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().z()));
vres = vmaxq_f32(vres, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pooling_type == PoolingType::L2)
{
vres = vmulq_f32(vres, vinvsqrtq_f32(vres));
}
// Store result
vst1q_f32(reinterpret_cast<float *>(output.ptr()), vres);
},
input, output);
}
void NEPoolingLayerKernel::poolingMxN_qasymm8_nchw(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().x() : _pool_info.pool_size().width;
const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().height;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_bottom);
const UniformQuantizationInfo &input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo &output_qinfo = _output->info()->quantization_info().uniform();
execute_window_loop(window, [&](const Coordinates & id)
{
uint8_t res = 0;
if(pooling_type != PoolingType::MAX)
{
uint32x4_t vres = vdupq_n_u32(0);
uint32_t sres = 0;
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const uint8x8_t data = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
const uint16x8_t data_u16 = vmovl_u8(data);
vres = vaddq_u32(vres, vaddl_u16(vget_high_u16(data_u16), vget_low_u16(data_u16)));
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
uint8_t data = *(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
sres += data;
}
}
// Reduction
const auto tmp = vpadd_u32(vget_high_u32(vres), vget_low_u32(vres));
sres += vget_lane_u32(tmp, 0) + vget_lane_u32(tmp, 1);
// Divide by scale
res = static_cast<uint8_t>(support::cpp11::round(sres * scale));
}
else
{
uint8x8_t vres = vdup_n_u8(0);
res = 0;
for(int y = 0; y < pool_size_y; ++y)
{
int x = 0;
for(; x <= (pool_size_x - 8); x += 8)
{
const uint8x8_t data = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
vres = vmax_u8(vres, data);
}
// Leftover for loop
for(; x < pool_size_x; ++x)
{
const uint8_t data = *(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().x() + (y - pool_pad_top) * _input->info()->strides_in_bytes().y()));
res = std::max(res, data);
}
}
// Reduce max
vres = vpmax_u8(vres, vres);
vres = vpmax_u8(vres, vres);
vres = vpmax_u8(vres, vres);
// Get max value
res = std::max(res, vget_lane_u8(vres, 0));
}
// Store result
res = (input_qinfo != output_qinfo) ? quantize_qasymm8(dequantize_qasymm8(res, input_qinfo), output_qinfo) : res;
*(reinterpret_cast<uint8_t *>(output.ptr())) = res;
},
input, output);
}
void NEPoolingLayerKernel::poolingMxN_qasymm8_nhwc(const Window &window_input, const Window &window, PoolingType pooling_type, bool exclude_padding)
{
Iterator input(_input, window_input);
Iterator output(_output, window);
const int pool_size_x = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().y() : _pool_info.pool_size().width;
const int pool_size_y = _pool_info.is_global_pooling() ? _input->info()->tensor_shape().z() : _pool_info.pool_size().height;
const int pool_pad_right = _pool_info.pad_stride_info().pad_right();
const int pool_pad_top = _pool_info.pad_stride_info().pad_top();
const int pool_pad_left = _pool_info.pad_stride_info().pad_left();
const int pool_pad_bottom = _pool_info.pad_stride_info().pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
const int upper_bound_w = _input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = _input->info()->dimension(2) + (exclude_padding ? 0 : pool_pad_bottom);
const float32x4_t half_scale_v = vdupq_n_f32(0.5f);
const UniformQuantizationInfo input_qinfo = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo output_qinfo = _output->info()->quantization_info().uniform();
execute_window_loop(window, [&](const Coordinates & id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_input.z().start() + pool_limit_y);
const int pool_end_y = std::min(pool_size_y, window_input.z().end() + pool_limit_y);
const int pool_start_x = std::max(0, window_input.y().start() + pool_limit_x);
const int pool_end_x = std::min(pool_size_x, window_input.y().end() + pool_limit_x);
if(pooling_type != PoolingType::MAX)
{
uint32x4_t vres1 = vdupq_n_u32(0);
uint32x4_t vres2 = vdupq_n_u32(0);
uint32x4_t vres3 = vdupq_n_u32(0);
uint32x4_t vres4 = vdupq_n_u32(0);
// Calculate scale
const float scale = calculate_avg_scale(exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x4_t scale_v = vdupq_n_f32(scale);
// Perform pooling
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8x16_t data = vld1q_u8(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().z()));
const uint16x8_t data_u16 = vmovl_u8(vget_low_u8(data));
const uint16x8_t data2_u16 = vmovl_u8(vget_high_u8(data));
vres1 = vaddq_u32(vres1, vmovl_u16(vget_low_u16(data_u16)));
vres2 = vaddq_u32(vres2, vmovl_u16(vget_high_u16(data_u16)));
vres3 = vaddq_u32(vres3, vmovl_u16(vget_low_u16(data2_u16)));
vres4 = vaddq_u32(vres4, vmovl_u16(vget_high_u16(data2_u16)));
}
}
// Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
vres1 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres1), scale_v));
vres2 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres2), scale_v));
vres3 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres3), scale_v));
vres4 = vcvtq_u32_f32(vmlaq_f32(half_scale_v, vcvtq_f32_u32(vres4), scale_v));
uint8x8_t res1 = vmovn_u16(vcombine_u16(vmovn_u32(vres1), vmovn_u32(vres2)));
uint8x8_t res2 = vmovn_u16(vcombine_u16(vmovn_u32(vres3), vmovn_u32(vres4)));
if(input_qinfo != output_qinfo)
{
const auto requantized_output = vquantize(vdequantize(vcombine_u8(res1, res2), input_qinfo), output_qinfo);
res1 = vget_low_u8(requantized_output);
res2 = vget_high_u8(requantized_output);
}
// Store result
vst1_u8(output.ptr(), res1);
vst1_u8(output.ptr() + 8, res2);
}
else
{
uint8x16_t vres = vdupq_n_u8(0);
for(int y = pool_start_y; y < pool_end_y; ++y)
{
for(int x = pool_start_x; x < pool_end_x; ++x)
{
const uint8x16_t data = vld1q_u8(reinterpret_cast<const uint8_t *>(input.ptr() + (x - pool_pad_left) * _input->info()->strides_in_bytes().y() +
(y - pool_pad_top) * _input->info()->strides_in_bytes().z()));
vres = vmaxq_u8(vres, data);
}
}
// Store result
vst1q_u8(output.ptr(), (input_qinfo != output_qinfo) ? vquantize(vdequantize(vres, input_qinfo), output_qinfo) : vres);
}
},
input, output);
}
Status NEPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
unsigned int pooled_w = 0;
unsigned int pooled_h = 0;
unsigned int num_elems_processed_per_iteration = 0;
BorderSize border_size(0);
const bool is_global_pooling = pool_info.is_global_pooling();
unsigned int pool_size_x = 0;
unsigned int pool_size_y = 0;
// Get data layout
const DataLayout data_layout = input->data_layout();
const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
pool_size_x = is_global_pooling ? input->dimension(idx_width) : pool_info.pool_size().width;
pool_size_y = is_global_pooling ? input->dimension(idx_height) : pool_info.pool_size().height;
// Validate pool info before calling scaled_dimensions
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_pool_info(pool_size_x, pool_size_y));
// Check output dimensions
std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(idx_width),
input->dimension(idx_height),
pool_size_x,
pool_size_y,
pool_info.pad_stride_info());
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, pooled_w, pooled_h));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info, num_elems_processed_per_iteration, border_size, pooled_w, pooled_h,
pool_size_x, pool_size_y)
.first);
return Status{};
}
void NEPoolingLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
const unsigned int pool_stride_x = _pool_info.pad_stride_info().stride().first;
const unsigned int pool_stride_y = _pool_info.pad_stride_info().stride().second;
const unsigned int pool_size = _pool_info.pool_size().width;
const bool exclude_padding = _pool_info.exclude_padding();
Window window_input(window);
if(_input->info()->data_layout() == DataLayout::NCHW)
{
// Set step for input in x and y direction for the input
unsigned int window_x_inc = 0;
switch(_input->info()->data_type())
{
case DataType::QASYMM8:
{
window_x_inc = pool_stride_x;
if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3)
{
window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
}
break;
}
case DataType::F16:
case DataType::F32:
{
window_x_inc = pool_stride_x;
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
}
}
window_input.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
window_input.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));
}
else
{
window_input.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), _num_elems_processed_per_iteration));
window_input.set(Window::DimY, Window::Dimension(0, _input->info()->dimension(1), pool_stride_x));
window_input.set(Window::DimZ, Window::Dimension(0, _input->info()->dimension(2), pool_stride_y));
}
// Run function
(this->*_func)(window_input, window, _pool_info.pool_type(), exclude_padding);
}