blob: 0641d6cfa373790d3f5326ab2e04efbfe3ba5aeb [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEIm2ColKernel.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <tuple>
using namespace arm_compute;
using namespace misc::shape_calculator;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info,
bool has_bias, const Size2D &dilation, unsigned int num_groups)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::QASYMM8 && has_bias);
ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Number of groups greater than one are not supported on NEON");
if(output->total_size() > 0)
{
TensorInfo expected_output = output->clone()->set_tensor_shape(compute_im2col_conv_shape(input, kernel_dims, conv_info, has_bias, dilation, false));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info,
bool has_bias, const Size2D &dilation)
{
const unsigned int width_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
std::pair<unsigned int, unsigned int> convolved_dims = scaled_dimensions(input->dimension(width_idx), input->dimension(height_idx),
kernel_dims.width, kernel_dims.height,
conv_info, dilation);
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output, input->clone()->set_tensor_shape(compute_im2col_conv_shape(input, kernel_dims, conv_info, has_bias, dilation, false)));
Window win = calculate_max_window(*input, Steps());
win.set(width_idx, Window::Dimension(0, convolved_dims.first, 1));
win.set(height_idx, Window::Dimension(0, convolved_dims.second, 1));
win.set(channel_idx, Window::Dimension(0, 1, 1));
// The NEIm2ColKernel doesn't need padding so update_window_and_padding() can be skipped
output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
return std::make_pair(Status{}, win);
}
template <typename T, bool has_pads>
inline void linearize_volume_nchw(const uint8_t *const in_ptr,
T *out_ptr,
bool has_bias,
int top_left_x,
int top_left_y,
int kernel_width,
int kernel_height,
int kernel_depth,
int input_w,
int input_h,
int input_stride_x,
int input_stride_y,
int input_stride_z,
int pad_value,
int dilation_x,
int dilation_y)
{
const int kernel_size2 = kernel_width * kernel_height;
const int x_e = top_left_x + kernel_width * dilation_x;
const int y_e = top_left_y + kernel_height * dilation_y;
// Linearize volume
int d = 0;
// This for loop linearize a volume with 3 slices. This allows:
// 1) to reduce the iterations of the outer for loop "d"
// 2) to have an optimized im2col for the first convolution layer where usually we have 3 IFMs
for(; d <= (kernel_depth - 3); d += 3)
{
for(int y = top_left_y; y < y_e; y += dilation_y)
{
if((y < 0 || y >= input_h) && has_pads)
{
// All the values will be the offset (will be zeros when not quantized)
for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
*(out_ptr + 0 * kernel_size2) = pad_value;
*(out_ptr + 1 * kernel_size2) = pad_value;
*(out_ptr + 2 * kernel_size2) = pad_value;
}
}
else
{
for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
if((x < 0 || x >= input_w) && has_pads)
{
*(out_ptr + 0 * kernel_size2) = pad_value;
*(out_ptr + 1 * kernel_size2) = pad_value;
*(out_ptr + 2 * kernel_size2) = pad_value;
}
else
{
*(out_ptr + 0 * kernel_size2) = *(reinterpret_cast<const T *>(in_ptr + ((d + 0) * input_stride_z + y * input_stride_y + x * input_stride_x)));
*(out_ptr + 1 * kernel_size2) = *(reinterpret_cast<const T *>(in_ptr + ((d + 1) * input_stride_z + y * input_stride_y + x * input_stride_x)));
*(out_ptr + 2 * kernel_size2) = *(reinterpret_cast<const T *>(in_ptr + ((d + 2) * input_stride_z + y * input_stride_y + x * input_stride_x)));
}
}
}
}
out_ptr += 2 * kernel_size2;
}
// Left over
for(; d < kernel_depth; d++)
{
for(int y = top_left_y; y < y_e; y += dilation_y)
{
if((y < 0 || y >= input_h) && has_pads)
{
// All the values will be the offset (will be zeros when not quantized)
memset(out_ptr, pad_value, kernel_width * sizeof(T));
out_ptr += kernel_width;
}
else
{
for(int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
{
if((x < 0 || x >= input_w) && has_pads)
{
*out_ptr = pad_value;
}
else
{
*out_ptr = *(reinterpret_cast<const T *>(in_ptr + (d * input_stride_z + y * input_stride_y + x * input_stride_x)));
}
}
}
}
}
// Append 1 if the convolution layer has biases
if(has_bias)
{
*out_ptr = static_cast<T>(1);
}
}
template <typename T, bool has_pads>
inline void linearize_volume_nhwc(const uint8_t *const in_ptr,
T *out_ptr,
bool has_bias,
int start_x,
int start_y,
int kernel_width,
int kernel_height,
int input_w,
int input_h,
int input_c,
int input_stride_y,
int input_stride_z,
int pad_value,
int dilation_x,
int dilation_y)
{
const int end_x = start_x + kernel_width * dilation_x;
const int end_y = start_y + kernel_height * dilation_y;
const int pad_quant = kernel_width * input_c;
const int element_size = static_cast<int>(sizeof(T));
if((start_y >= 0) && (end_y < input_h) && (start_x >= 0) && (end_x < input_w) && (dilation_x == 1) && (input_stride_y == input_c * element_size))
{
for(int y = start_y; y < end_y; y += dilation_y)
{
//optimized for no dilation and no boundary pixels
memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + start_x * input_stride_y)), input_c * kernel_width * element_size);
out_ptr += input_c * kernel_width;
}
}
else
{
for(int y = start_y; y < end_y; y += dilation_y)
{
if(y < 0 || y >= input_h)
{
memset(out_ptr, pad_value, pad_quant * element_size);
out_ptr += pad_quant;
}
else if(dilation_x > 1 || start_x < 0 || end_x >= input_w || input_stride_y != input_c * element_size)
{
for(int x = start_x; x < end_x; x += dilation_x)
{
if(x < 0 || x >= input_w)
{
memset(out_ptr, pad_value, input_c * element_size);
out_ptr += input_c;
}
else
{
memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + x * input_stride_y)), input_c * element_size);
out_ptr += input_c;
}
}
}
else
{
//optimized for no dilation and no boundary pixels
memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + start_x * input_stride_y)), input_c * kernel_width * element_size);
out_ptr += input_c * kernel_width;
}
}
}
// Append 1 if the convolution layer has biases
if(has_bias)
{
*out_ptr = static_cast<T>(1);
}
}
} // namespace
template <typename T, bool has_pads, bool is_nchw>
void NEIm2ColKernel::run_im2col(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
const DataLayout data_layout = _input->info()->data_layout();
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
const int input_w = _input->info()->dimension(width_idx);
const int input_h = _input->info()->dimension(height_idx);
const int input_c = _input->info()->dimension(channel_idx);
const int input_stride_x = _input->info()->strides_in_bytes().x();
const int input_stride_y = _input->info()->strides_in_bytes().y();
const int input_stride_z = _input->info()->strides_in_bytes().z();
const int pad_left = _conv_info.pad_left();
const int pad_top = _conv_info.pad_top();
const int stride_x = _conv_info.stride().first;
const int stride_y = _conv_info.stride().second;
const int pad_value = is_data_type_quantized(_input->info()->data_type()) ? _input->info()->quantization_info().uniform().offset : 0;
Window window_in_out(window);
// The first three dimensions of the input and output are increased by the inner loops
window_in_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_in_out.set(Window::DimY, Window::Dimension(0, 0, 0));
window_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
// Create iterators
Iterator in(_input, window_in_out);
Iterator out(_output, window_in_out);
execute_window_loop(window, [&](const Coordinates & id)
{
const int start_w = id[width_idx] * stride_x - pad_left;
const int start_h = id[height_idx] * stride_y - pad_top;
// Get pointers
const uint8_t *const input_ptr = in.ptr();
auto output_ptr = reinterpret_cast<T *>(out.ptr() + (id[width_idx] + id[height_idx] * _convolved_dims.first) * _output->info()->strides_in_bytes().y());
// Linearize volume
if(is_nchw)
{
linearize_volume_nchw<T, has_pads>(input_ptr,
output_ptr,
_has_bias,
start_w,
start_h,
_kernel_width,
_kernel_height,
input_c,
input_w,
input_h,
input_stride_x,
input_stride_y,
input_stride_z,
pad_value,
_dilation.x(),
_dilation.y());
}
else
{
linearize_volume_nhwc<T, has_pads>(input_ptr,
output_ptr,
_has_bias,
start_w,
start_h,
_kernel_width,
_kernel_height,
input_w,
input_h,
input_c,
input_stride_y,
input_stride_z,
pad_value,
_dilation.x(),
_dilation.y());
}
},
in, out);
}
NEIm2ColKernel::NEIm2ColKernel()
: _func(), _input(nullptr), _output(nullptr), _convolved_dims(), _conv_info(), _kernel_width(0), _kernel_height(0), _has_bias(false), _dilation(1U, 1U)
{
}
void NEIm2ColKernel::configure(const ITensor *input, ITensor *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info,
bool has_bias, const Size2D &dilation, unsigned int num_groups)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), kernel_dims, conv_info, has_bias, dilation, num_groups));
ARM_COMPUTE_UNUSED(num_groups);
const DataLayout data_layout = input->info()->data_layout();
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
_input = input;
_output = output;
_conv_info = conv_info;
_kernel_width = kernel_dims.width;
_kernel_height = kernel_dims.height;
_dilation = dilation;
_convolved_dims = scaled_dimensions(input->info()->dimension(width_idx), input->info()->dimension(height_idx),
_kernel_width, _kernel_height,
_conv_info, _dilation);
_has_bias = has_bias;
if(data_layout == DataLayout::NCHW)
{
switch(_input->info()->data_type())
{
case DataType::F32:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col<float, false, true> : &NEIm2ColKernel::run_im2col<float, true, true>;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col<float16_t, false, true> : &NEIm2ColKernel::run_im2col<float16_t, true, true>;
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::QASYMM8:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col<qasymm8_t, false, true> : &NEIm2ColKernel::run_im2col<qasymm8_t, true, true>;
break;
default:
ARM_COMPUTE_ERROR("Data type not supported");
break;
}
}
else
{
switch(_input->info()->data_type())
{
case DataType::F32:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col<float, false, false> : &NEIm2ColKernel::run_im2col<float, true, false>;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col<float16_t, false, false> : &NEIm2ColKernel::run_im2col<float16_t, true, false>;
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::QASYMM8:
_func = (!conv_info.has_padding()) ? &NEIm2ColKernel::run_im2col<qasymm8_t, false, false> : &NEIm2ColKernel::run_im2col<qasymm8_t, true, false>;
break;
default:
ARM_COMPUTE_ERROR("Data type not supported");
break;
}
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), kernel_dims, conv_info, has_bias, dilation);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
Status NEIm2ColKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const Size2D &kernel_dims, const PadStrideInfo &conv_info,
bool has_bias, const Size2D &dilation, unsigned int num_groups)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, kernel_dims, conv_info, has_bias, dilation, num_groups));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), kernel_dims, conv_info, has_bias, dilation).first);
return Status{};
}
void NEIm2ColKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
(this->*_func)(window);
}