blob: 836e429aba0991f7b039b118e2e496f9abc44857 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEFuseBatchNormalizationKernel.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "support/ToolchainSupport.h"
#include "utils/TypePrinter.h"
#include <map>
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var,
const ITensorInfo *fused_weights, const ITensorInfo *fused_bias,
const ITensorInfo *input_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma,
float epsilon, FuseBatchNormalizationType fbn_type)
{
ARM_COMPUTE_UNUSED(epsilon);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input_weights);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_weights, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_var);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_mean, bn_var);
ARM_COMPUTE_RETURN_ERROR_ON(input_bias == nullptr && fused_bias == nullptr);
ARM_COMPUTE_RETURN_ERROR_ON(bn_mean->num_dimensions() > 1);
if(fbn_type == FuseBatchNormalizationType::CONVOLUTION)
{
ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(3) != bn_mean->dimension(0));
}
else
{
const size_t channel_idx = get_data_layout_dimension_index(input_weights->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(channel_idx) != bn_mean->dimension(0));
}
// Validate bias
if(input_bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, input_bias);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, input_bias);
}
// Validate beta
if(bn_beta != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_beta);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_beta);
}
// Validate gamma
if(bn_gamma != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_gamma);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_gamma);
}
// Validate output weights
if(fused_weights != nullptr && fused_weights->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_weights, fused_weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input_weights, fused_weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_weights);
}
// Validate output bias
if(fused_bias != nullptr && fused_bias->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, fused_bias);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_bias);
}
return Status{};
}
template <typename VectorType>
void fused_batch_normalization_conv(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias,
const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window)
{
using ScalarType = typename VectorType::scalar_type;
const int size = 16 / conv_weights->info()->element_size();
using ExactTagType = typename VectorType::tag_type;
const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights);
const bool run_in_place_bias = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias);
// Set build options
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = size;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Iterator conv_w_in(conv_weights, win);
Iterator conv_w_out(run_in_place_weights ? conv_weights : fused_weights, win);
const auto conv_bias_in = (conv_bias != nullptr ? reinterpret_cast<ScalarType *>(conv_bias->ptr_to_element(Coordinates(0, 0))) : nullptr);
auto conv_bias_out = (run_in_place_bias ? conv_bias_in : reinterpret_cast<ScalarType *>(fused_bias->ptr_to_element(Coordinates(0, 0))));
const auto input_mean = reinterpret_cast<const ScalarType *>(bn_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const ScalarType *>(bn_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast<const ScalarType *>(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast<const ScalarType *>(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{});
auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{});
auto mean = ScalarType(0.0);
auto var = ScalarType(0.0);
auto gamma = ScalarType(1.0);
auto beta = ScalarType(0.0);
auto conv_bias_in_scalar = ScalarType(0.0);
execute_window_loop(win, [&](const Coordinates & id)
{
var = input_var[id[3]];
if(input_gamma != nullptr)
{
gamma = input_gamma[id[3]];
}
if((id[0] == 0) && (id[1] == 0) && (id[2] == 0))
{
if(input_beta != nullptr)
{
beta = input_beta[id[3]];
beta_vec = wrapper::vdup_n(beta, ExactTagType{});
}
// Construct vectors
mean = input_mean[id[3]];
mean_vec = wrapper::vdup_n(mean, ExactTagType{});
if(conv_bias_in != nullptr)
{
conv_bias_in_scalar = conv_bias_in[id[3]];
}
auto conv_bias_tmp_scalar = (conv_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon));
conv_bias_out[id[3]] = (conv_bias_tmp_scalar * gamma) + beta;
}
int x = window_start_x;
auto conv_w_in_ptr = reinterpret_cast<const ScalarType *>(conv_w_in.ptr());
auto conv_w_out_ptr = reinterpret_cast<ScalarType *>(conv_w_out.ptr());
var_vec = wrapper::vdup_n(var, ExactTagType{});
gamma_vec = wrapper::vdup_n(gamma, ExactTagType{});
rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
auto wn = wrapper::vloadq(conv_w_in_ptr + x);
wn = wrapper::vmul(wn, rvar_vec);
wn = wrapper::vmul(wn, gamma_vec);
// Store results
wrapper::vstore(conv_w_out_ptr + x, wn);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(conv_w_out_ptr + x) = *(conv_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma;
}
},
conv_w_in, conv_w_out);
}
template <typename VectorType>
void fused_batch_normalization_dwc_nhwc(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias,
const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window)
{
using ScalarType = typename VectorType::scalar_type;
const int size = 16 / dwc_weights->info()->element_size();
using ExactTagType = typename VectorType::tag_type;
const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == dwc_weights);
const bool run_in_place_bias = (fused_bias == nullptr) || (dwc_bias != nullptr && fused_bias == dwc_bias);
// Set build options
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = size;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Iterator dwc_w_in(dwc_weights, win);
Iterator dwc_w_out(run_in_place_weights ? dwc_weights : fused_weights, win);
const auto dwc_bias_in = (dwc_bias != nullptr ? reinterpret_cast<ScalarType *>(dwc_bias->ptr_to_element(Coordinates(0, 0))) : nullptr);
auto dwc_bias_out = (run_in_place_bias ? dwc_bias_in : reinterpret_cast<ScalarType *>(fused_bias->ptr_to_element(Coordinates(0, 0))));
const auto input_mean = reinterpret_cast<const ScalarType *>(bn_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const ScalarType *>(bn_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast<const ScalarType *>(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast<const ScalarType *>(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{});
auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto dwc_bias_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{});
auto gamma = ScalarType(1.0);
auto beta = ScalarType(0.0);
auto dwc_bias_in_scalar = ScalarType(0);
execute_window_loop(win, [&](const Coordinates & id)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
var_vec = wrapper::vloadq(input_var + x);
if(input_gamma != nullptr)
{
gamma_vec = wrapper::vloadq(input_gamma + x);
}
if((id[2] == 0) && (id[1] == 0))
{
mean_vec = wrapper::vloadq(input_mean + x);
// Construct vectors
if(input_beta != nullptr)
{
beta_vec = wrapper::vloadq(input_beta + x);
}
if(dwc_bias_in != nullptr)
{
dwc_bias_vec = wrapper::vloadq(dwc_bias_in + x);
}
auto dwc_bias_tmp_vec = wrapper::vmul(wrapper::vsub(dwc_bias_vec, mean_vec), wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)));
dwc_bias_tmp_vec = wrapper::vadd(wrapper::vmul(dwc_bias_tmp_vec, gamma_vec), beta_vec);
wrapper::vstore(dwc_bias_out + x, dwc_bias_tmp_vec);
}
auto dwc_w_in_ptr = reinterpret_cast<const ScalarType *>(dwc_w_in.ptr());
auto dwc_w_out_ptr = reinterpret_cast<ScalarType *>(dwc_w_out.ptr());
auto wn = wrapper::vloadq(dwc_w_in_ptr + x);
rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
wn = wrapper::vmul(wn, rvar_vec);
wn = wrapper::vmul(wn, gamma_vec);
// Store results
wrapper::vstore(dwc_w_out_ptr + x, wn);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
auto var = input_var[x];
if(input_gamma != nullptr)
{
gamma = input_gamma[x];
}
if(id[2] == 0 && id[1] == 0)
{
auto mean = input_mean[x];
if(input_beta != nullptr)
{
beta = input_beta[x];
}
if(dwc_bias_in != nullptr)
{
dwc_bias_in_scalar = dwc_bias_in[x];
}
auto dwc_bias_tmp_scalar = (dwc_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon));
dwc_bias_out[x] = (dwc_bias_tmp_scalar * gamma) + beta;
}
const auto dwc_w_in_ptr = reinterpret_cast<const ScalarType *>(dwc_w_in.ptr());
auto dwc_w_out_ptr = reinterpret_cast<ScalarType *>(dwc_w_out.ptr());
*(dwc_w_out_ptr + x) = *(dwc_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma;
}
},
dwc_w_in, dwc_w_out);
}
template <typename VectorType>
void fused_batch_normalization_dwc_nchw(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias,
const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window)
{
using ScalarType = typename VectorType::scalar_type;
const int size = 16 / dwc_weights->info()->element_size();
using ExactTagType = typename VectorType::tag_type;
const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == dwc_weights);
const bool run_in_place_bias = (fused_bias == nullptr) || (dwc_bias != nullptr && fused_bias == dwc_bias);
// Set build options
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = size;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Iterator dwc_w_in(dwc_weights, win);
Iterator dwc_w_out(run_in_place_weights ? dwc_weights : fused_weights, win);
const auto dwc_bias_in = (dwc_bias != nullptr ? reinterpret_cast<ScalarType *>(dwc_bias->ptr_to_element(Coordinates(0, 0))) : nullptr);
auto dwc_bias_out = (run_in_place_bias ? dwc_bias_in : reinterpret_cast<ScalarType *>(fused_bias->ptr_to_element(Coordinates(0, 0))));
const auto input_mean = reinterpret_cast<const ScalarType *>(bn_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const ScalarType *>(bn_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast<const ScalarType *>(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast<const ScalarType *>(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{});
auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{});
const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{});
auto mean = ScalarType(0.0);
auto var = ScalarType(0.0);
auto gamma = ScalarType(1.0);
auto beta = ScalarType(0.0);
auto dwc_bias_in_scalar = ScalarType(0.0);
execute_window_loop(win, [&](const Coordinates & id)
{
var = input_var[id[2]];
if(input_gamma != nullptr)
{
gamma = input_gamma[id[2]];
}
if(id[1] == 0)
{
mean = input_mean[id[2]];
// Construct vectors
mean_vec = wrapper::vdup_n(mean, ExactTagType{});
if(input_beta != nullptr)
{
beta = input_beta[id[2]];
beta_vec = wrapper::vdup_n(beta, ExactTagType{});
}
if(dwc_bias_in != nullptr)
{
dwc_bias_in_scalar = dwc_bias_in[id[2]];
}
auto dwc_bias_tmp_scalar = (dwc_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon));
dwc_bias_out[id[2]] = (dwc_bias_tmp_scalar * gamma) + beta;
}
int x = window_start_x;
auto dwc_w_in_ptr = reinterpret_cast<const ScalarType *>(dwc_w_in.ptr());
auto dwc_w_out_ptr = reinterpret_cast<ScalarType *>(dwc_w_out.ptr());
var_vec = wrapper::vdup_n(var, ExactTagType{});
gamma_vec = wrapper::vdup_n(gamma, ExactTagType{});
rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
auto wn = wrapper::vloadq(dwc_w_in_ptr + x);
wn = wrapper::vmul(wn, rvar_vec);
wn = wrapper::vmul(wn, gamma_vec);
// Store results
wrapper::vstore(dwc_w_out_ptr + x, wn);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(dwc_w_out_ptr + x) = *(dwc_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma;
}
},
dwc_w_in, dwc_w_out);
}
} // namespace
NEFuseBatchNormalizationKernel::NEFuseBatchNormalizationKernel()
: _input_weights(nullptr), _input_bias(nullptr), _bn_mean(nullptr), _bn_var(nullptr), _bn_gamma(nullptr), _bn_beta(nullptr), _fused_weights(nullptr), _fused_bias(nullptr), _epsilon(),
_run_in_place_weights(false), _run_in_place_bias(false), _func(nullptr)
{
}
void NEFuseBatchNormalizationKernel::configure(const ITensor *input_weights, const ITensor *bn_mean, const ITensor *bn_var,
ITensor *fused_weights, ITensor *fused_bias,
const ITensor *input_bias, const ITensor *bn_beta, const ITensor *bn_gamma,
float epsilon, FuseBatchNormalizationType fbn_type)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var);
_input_weights = input_weights;
_input_bias = input_bias;
_bn_mean = bn_mean;
_bn_var = bn_var;
_bn_beta = bn_beta;
_bn_gamma = bn_gamma;
_fused_weights = fused_weights;
_fused_bias = fused_bias;
_epsilon = epsilon;
_run_in_place_weights = (fused_weights == nullptr) || (fused_weights == input_weights);
_run_in_place_bias = (fused_bias == nullptr) || (input_bias != nullptr && fused_bias == input_bias);
// Auto initialize outputs
if(_fused_weights != nullptr)
{
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*_fused_weights->info(), *_input_weights->info()->clone());
fused_weights->info()->set_valid_region(input_weights->info()->valid_region());
}
if(_fused_bias != nullptr)
{
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*_fused_bias->info(), *_bn_mean->info()->clone());
_fused_bias->info()->set_valid_region(bn_mean->info()->valid_region());
}
// Validate arguments
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_weights->info(), bn_mean->info(), bn_var->info(),
(fused_weights != nullptr) ? fused_weights->info() : nullptr,
(fused_bias != nullptr) ? fused_bias->info() : nullptr,
(input_bias != nullptr) ? input_bias->info() : nullptr,
(bn_beta != nullptr) ? bn_beta->info() : nullptr,
(bn_gamma != nullptr) ? bn_gamma->info() : nullptr,
epsilon, fbn_type));
// Configure kernel window
Window win = calculate_max_window(*input_weights->info());
INEKernel::configure(win);
// Configure function
static std::map<std::string, FuseBatchNormFunction *> map_function =
{
{ "fused_batch_normalization_conv_NHWC_F32", &fused_batch_normalization_conv<wrapper::traits::neon_vector<float, 4>> },
{ "fused_batch_normalization_conv_NCHW_F32", &fused_batch_normalization_conv<wrapper::traits::neon_vector<float, 4>> },
{ "fused_batch_normalization_dwc_NHWC_F32", &fused_batch_normalization_dwc_nhwc<wrapper::traits::neon_vector<float, 4>> },
{ "fused_batch_normalization_dwc_NCHW_F32", &fused_batch_normalization_dwc_nchw<wrapper::traits::neon_vector<float, 4>> },
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
{ "fused_batch_normalization_conv_NHWC_F16", &fused_batch_normalization_conv<wrapper::traits::neon_vector<float16_t, 8>> },
{ "fused_batch_normalization_conv_NCHW_F16", &fused_batch_normalization_conv<wrapper::traits::neon_vector<float16_t, 8>> },
{ "fused_batch_normalization_dwc_NHWC_F16", &fused_batch_normalization_dwc_nhwc<wrapper::traits::neon_vector<float16_t, 8>> },
{ "fused_batch_normalization_dwc_NCHW_F16", &fused_batch_normalization_dwc_nchw<wrapper::traits::neon_vector<float16_t, 8>> },
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
};
std::string function_to_call("fused_batch_normalization_");
function_to_call += fbn_type == FuseBatchNormalizationType::CONVOLUTION ? "conv_" : "dwc_";
function_to_call += string_from_data_layout(_input_weights->info()->data_layout());
function_to_call += "_";
function_to_call += string_from_data_type(_input_weights->info()->data_type());
auto it = map_function.find(function_to_call);
if(it != map_function.end())
{
_func = it->second;
}
}
Status NEFuseBatchNormalizationKernel::validate(const ITensorInfo *input_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var,
const ITensorInfo *fused_weights, const ITensorInfo *fused_bias,
const ITensorInfo *input_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma,
float epsilon, FuseBatchNormalizationType fbn_type)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_weights, bn_mean, bn_var, fused_weights, fused_bias, input_bias, bn_beta, bn_gamma, epsilon, fbn_type));
return Status{};
}
void NEFuseBatchNormalizationKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
(*_func)(_input_weights, _input_bias, _fused_weights, _fused_bias, _bn_mean, _bn_var, _bn_beta, _bn_gamma, _epsilon, window);
}
} // namespace arm_compute