blob: 7c029a6b542777dd57ab24c4042474cebf9d0faf [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
ARM_COMPUTE_UNUSED(result_offset_after_shift);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8,
DataType::F16,
DataType::S32, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(result_shift < 0, "Result shift must be a non negative integer");
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::F16, DataType::S32, DataType::F32);
if(is_data_type_quantized_asymmetric(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
}
ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)));
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_float(input->data_type()), "Calling output stage kernel with floating point arguments");
}
// Checks performed when output is configured
if((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
if(is_data_type_quantized_asymmetric(output->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::S32 && output->data_type() != DataType::QASYMM8, "Wrong data type for bias");
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output)
{
ARM_COMPUTE_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
bool window_changed = false;
unsigned int num_elems_processed_per_iteration = 16 / element_size_from_data_type(input->data_type());
// Update processed elements when input is S32 (comes from quantization input)
if(input->data_type() == DataType::S32)
{
num_elems_processed_per_iteration = 16;
}
// Configure kernel window
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
if(output != nullptr && (output->total_size() != 0))
{
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
if(bias == nullptr)
{
window_changed = update_window_and_padding(win, input_access, output_access);
}
else
{
AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
window_changed = update_window_and_padding(win, input_access, output_access, bias_access);
}
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
else
{
if(bias == nullptr)
{
window_changed = update_window_and_padding(win, input_access);
}
else
{
if(input->data_layout() == DataLayout::NCHW)
{
AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
window_changed = update_window_and_padding(win, input_access, bias_access);
}
else
{
AccessWindowHorizontal bias_access(bias, 0, num_elems_processed_per_iteration);
window_changed = update_window_and_padding(win, input_access, bias_access);
}
}
input_access.set_valid_region(win, ValidRegion(Coordinates(), input->tensor_shape()));
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
// Internal load
inline float32x4_t internal_vld1q(const float *in)
{
return vld1q_f32(in);
}
// Internal store
inline void internal_vst1q(float *p, const float32x4_t &v)
{
vst1q_f32(p, v);
}
// Internal vdup
inline float32x4_t internal_vdupq_n(float v)
{
return vdupq_n_f32(v);
}
// Internal vadd
inline float32x4_t internal_vqaddq(const float32x4_t &x, const float32x4_t &y)
{
return vaddq_f32(x, y);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
inline float16x8_t internal_vld1q(const float16_t *in)
{
return vld1q_f16(in);
}
inline void internal_vst1q(float16_t *p, const float16x8_t &v)
{
vst1q_f16(p, v);
}
inline float16x8_t internal_vdupq_n(float16_t v)
{
return vdupq_n_f16(v);
}
inline float16x8_t internal_vqaddq(const float16x8_t &x, const float16x8_t &y)
{
return vaddq_f16(x, y);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <typename T1, typename T2, bool in_place, bool has_bias>
void output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
ARM_COMPUTE_ERROR_ON(input->info()->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
ARM_COMPUTE_UNUSED(result_shift);
ARM_COMPUTE_UNUSED(result_offset_after_shift);
Iterator in(input, window);
if(in_place) // In place accumulate
{
execute_window_loop(window, [&](const Coordinates & id)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<T1 *>(in.ptr());
// Accumulate bias
if(has_bias)
{
const auto vb = internal_vdupq_n(static_cast<T1>(*reinterpret_cast<const T2 *>(bias->ptr_to_element(Coordinates(id.z())))));
internal_vst1q(in_ptr, internal_vqaddq(internal_vld1q(in_ptr), vb));
}
else
{
internal_vst1q(in_ptr, internal_vld1q(in_ptr));
}
},
in);
}
else // Out of place accumulate
{
Iterator out(output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<const T1 *>(in.ptr());
const auto out_ptr = reinterpret_cast<T2 *>(out.ptr());
// Accumulate bias
if(has_bias)
{
const auto vb = internal_vdupq_n(static_cast<T1>(*reinterpret_cast<const T2 *>(bias->ptr_to_element(Coordinates(id.z())))));
internal_vst1q(out_ptr, internal_vqaddq(internal_vld1q(in_ptr), vb));
}
else
{
internal_vst1q(out_ptr, internal_vld1q(in_ptr));
}
},
in, out);
}
}
template <typename T1, typename T2, bool in_place, bool has_bias>
void output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
ARM_COMPUTE_UNUSED(result_shift);
ARM_COMPUTE_UNUSED(result_offset_after_shift);
Window window_bias = window;
window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
window_bias.set(3, Window::Dimension(0, 0, 0));
Iterator in(input, window);
Iterator bi(bias, window_bias);
if(in_place) // In place accumulate
{
execute_window_loop(window, [&](const Coordinates &)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<T1 *>(in.ptr());
const auto bias_ptr = reinterpret_cast<T2 *>(bi.ptr());
// Accumulate bias
if(has_bias)
{
internal_vst1q(in_ptr, internal_vqaddq(internal_vld1q(in_ptr), internal_vld1q(bias_ptr)));
}
else
{
internal_vst1q(in_ptr, internal_vld1q(in_ptr));
}
},
in, bi);
}
else // Out of place accumulate
{
Iterator out(output, window);
execute_window_loop(window, [&](const Coordinates &)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<T1 *>(in.ptr());
const auto out_ptr = reinterpret_cast<T2 *>(out.ptr());
const auto bias_ptr = reinterpret_cast<T2 *>(bi.ptr());
// Accumulate bias
if(has_bias)
{
internal_vst1q(out_ptr, internal_vqaddq(internal_vld1q(in_ptr), internal_vld1q(bias_ptr)));
}
else
{
internal_vst1q(out_ptr, internal_vld1q(in_ptr));
}
},
in, bi, out);
}
}
// QASYMM8 specializations
template <>
void output_stage_nchw<int32_t, uint8_t, false, true>(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
uint8x16_t min = vdupq_n_u8(0);
uint8x16_t max = vdupq_n_u8(255);
Iterator in(input, window);
Iterator out(output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr());
int32x4x4_t v_in =
{
{
vld1q_s32(in_ptr),
vld1q_s32(in_ptr + 4),
vld1q_s32(in_ptr + 8),
vld1q_s32(in_ptr + 12)
}
};
// Accumulate bias
const auto vb = vdupq_n_s32(*reinterpret_cast<const int32_t *>(bias->ptr_to_element(Coordinates(id.z()))));
v_in =
{
{
vaddq_s32(v_in.val[0], vb),
vaddq_s32(v_in.val[1], vb),
vaddq_s32(v_in.val[2], vb),
vaddq_s32(v_in.val[3], vb)
}
};
const auto out_ptr = reinterpret_cast<uint8_t *>(out.ptr());
vst1q_u8(out_ptr, finalize_quantization<false>(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max));
},
in, out);
}
template <>
void output_stage_nchw<int32_t, uint8_t, false, false>(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
ARM_COMPUTE_UNUSED(bias);
const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
uint8x16_t min = vdupq_n_u8(0);
uint8x16_t max = vdupq_n_u8(255);
Iterator in(input, window);
Iterator out(output, window);
execute_window_loop(window, [&](const Coordinates &)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr());
int32x4x4_t v_in =
{
{
vld1q_s32(in_ptr),
vld1q_s32(in_ptr + 4),
vld1q_s32(in_ptr + 8),
vld1q_s32(in_ptr + 12)
}
};
const auto out_ptr = reinterpret_cast<uint8_t *>(out.ptr());
vst1q_u8(out_ptr, finalize_quantization<false>(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max));
},
in, out);
}
template <>
void output_stage_nhwc<int32_t, uint8_t, false, true>(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
uint8x16_t min = vdupq_n_u8(0);
uint8x16_t max = vdupq_n_u8(255);
Window window_bias = window;
window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
window_bias.set(3, Window::Dimension(0, 0, 0));
Iterator in(input, window);
Iterator bi(bias, window_bias);
Iterator out(output, window);
execute_window_loop(window, [&](const Coordinates &)
{
// Get bias and pointer to input
const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr());
const auto bias_ptr = reinterpret_cast<int32_t *>(bi.ptr());
// Accumulate bias
int32x4x4_t v_in =
{
{
vaddq_s32(vld1q_s32(in_ptr), vld1q_s32(bias_ptr)),
vaddq_s32(vld1q_s32(in_ptr + 4), vld1q_s32(bias_ptr + 4)),
vaddq_s32(vld1q_s32(in_ptr + 8), vld1q_s32(bias_ptr + 8)),
vaddq_s32(vld1q_s32(in_ptr + 12), vld1q_s32(bias_ptr + 12))
}
};
const auto out_ptr = out.ptr();
vst1q_u8(out_ptr, finalize_quantization<false>(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max));
},
in, bi, out);
}
template <>
void output_stage_nhwc<int32_t, uint8_t, false, false>(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
ARM_COMPUTE_UNUSED(bias);
const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
uint8x16_t min = vdupq_n_u8(0);
uint8x16_t max = vdupq_n_u8(255);
Iterator in(input, window);
Iterator out(output, window);
execute_window_loop(window, [&](const Coordinates &)
{
// Get pointer to input
const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr());
int32x4x4_t v_in =
{
{
vld1q_s32(in_ptr),
vld1q_s32(in_ptr + 4),
vld1q_s32(in_ptr + 8),
vld1q_s32(in_ptr + 12)
}
};
const auto out_ptr = out.ptr();
vst1q_u8(out_ptr, finalize_quantization<false>(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max));
},
in, out);
}
} // namespace
NEDirectConvolutionLayerOutputStageKernel::NEDirectConvolutionLayerOutputStageKernel()
: _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _result_offset_after_shift(0)
{
}
void NEDirectConvolutionLayerOutputStageKernel::configure(ITensor *input, const ITensor *bias, ITensor *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input);
// Auto-initialize output output if required
if(output != nullptr)
{
// Work out expected output data type
const DataType output_dt = (input->info()->data_type() == DataType::S32) ? DataType::QASYMM8 : input->info()->data_type();
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_dt));
}
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info(),
result_fixedpoint_multiplier, result_shift, result_offset_after_shift));
_func = nullptr;
_bias = bias;
_input = input;
_output = output;
_result_fixedpoint_multiplier = result_fixedpoint_multiplier;
_result_shift = result_shift;
_result_offset_after_shift = result_offset_after_shift;
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
const bool has_bias = bias != nullptr;
// Set appropriate function
if(input->info()->data_layout() == DataLayout::NCHW)
{
switch(input->info()->data_type())
{
case DataType::S32:
{
_func = (bias == nullptr) ? &output_stage_nchw<int32_t, uint8_t, false, false> : &output_stage_nchw<int32_t, uint8_t, false, true>;
break;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
if(has_bias)
{
_func = (output == nullptr) ? &output_stage_nchw<float16_t, float16_t, true, true> : &output_stage_nchw<float16_t, float16_t, false, true>;
}
else
{
_func = (output == nullptr) ? &output_stage_nchw<float16_t, float16_t, true, false> : &output_stage_nchw<float16_t, float16_t, false, false>;
}
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
{
if(has_bias)
{
_func = (output == nullptr) ? &output_stage_nchw<float, float, true, true> : &output_stage_nchw<float, float, false, true>;
}
else
{
_func = (output == nullptr) ? &output_stage_nchw<float, float, true, false> : &output_stage_nchw<float, float, false, false>;
}
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
}
}
}
else
{
switch(input->info()->data_type())
{
case DataType::S32:
{
_func = (bias == nullptr) ? &output_stage_nhwc<int32_t, uint8_t, false, false> : &output_stage_nhwc<int32_t, uint8_t, false, true>;
break;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
if(has_bias)
{
_func = (output == nullptr) ? &output_stage_nhwc<float16_t, float16_t, true, true> : &output_stage_nhwc<float16_t, float16_t, false, true>;
}
else
{
_func = (output == nullptr) ? &output_stage_nhwc<float16_t, float16_t, true, false> : &output_stage_nhwc<float16_t, float16_t, false, false>;
}
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
{
if(has_bias)
{
_func = (output == nullptr) ? &output_stage_nhwc<float, float, true, true> : &output_stage_nhwc<float, float, false, true>;
}
else
{
_func = (output == nullptr) ? &output_stage_nhwc<float, float, true, false> : &output_stage_nhwc<float, float, false, false>;
}
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
}
}
}
}
Status NEDirectConvolutionLayerOutputStageKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, result_fixedpoint_multiplier, result_shift, result_offset_after_shift));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), bias == nullptr ? nullptr : bias->clone().get(), output == nullptr ? nullptr : output->clone().get()).first);
return Status{};
}
void NEDirectConvolutionLayerOutputStageKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(*_func)(_input, _bias, window, _output, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift);
}