blob: 6bd30ee84540d109af1ba0252365c50fbcdd39ea [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEBatchNormalizationLayerKernel.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/NEON/kernels/detail/NEActivationFunctionDetail.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <map>
using namespace arm_compute;
namespace
{
Status
validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_UNUSED(epsilon);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
if(act_info.enabled())
{
ActivationLayerInfo::ActivationFunction act = act_info.activation();
ARM_COMPUTE_RETURN_ERROR_ON(act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU
&& act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU
&& act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
ARM_COMPUTE_RETURN_ERROR_ON(act_info.b() > act_info.a());
}
if(nullptr != output)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, var);
if(beta != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta);
}
if(gamma != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma);
}
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)) != mean->dimension(0));
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *mean, ITensorInfo *var, ITensorInfo *gamma, ITensorInfo *beta)
{
if(output != nullptr)
{
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output, *input->clone());
}
unsigned int num_elems_processed_per_iteration = 16 / input->element_size();
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win, input_access);
if(output != nullptr)
{
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
window_changed |= update_window_and_padding(win, output_access);
output_access.set_valid_region(win, input->valid_region());
}
// Mean, var, gamma and beta get parallelized for the NHWC case as they follow the channel dimension, which is along the first axis
if(input->data_layout() == DataLayout::NHWC)
{
AccessWindowHorizontal mean_access(mean, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal var_access(var, 0, num_elems_processed_per_iteration);
window_changed |= update_window_and_padding(win, mean_access, var_access);
if(gamma != nullptr)
{
AccessWindowHorizontal gamma_access(gamma, 0, num_elems_processed_per_iteration);
window_changed |= update_window_and_padding(win, gamma_access);
}
if(beta != nullptr)
{
AccessWindowHorizontal beta_access(beta, 0, num_elems_processed_per_iteration);
window_changed |= update_window_and_padding(win, beta_access);
}
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} //namespace
template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw(const Window &window)
{
ARM_COMPUTE_UNUSED(window);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window);
Iterator output(_output, window);
F activation_functor(_act_info);
// Hold information about the current feature map we are iterating.
// Only compute denominator and NEON vectors once per feature map.
int slice = -1;
const auto input_mean = reinterpret_cast<const float16_t *>(_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const float16_t *>(_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float16_t *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (_beta != nullptr) ? reinterpret_cast<const float16_t *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
float16x8_t mean_vec = vdupq_n_f16(0.0);
float16x8_t var_vec = vdupq_n_f16(0.0);
float16x8_t gamma_vec = vdupq_n_f16(1.0);
float16x8_t beta_vec = vdupq_n_f16(0.0);
float16x8_t denominator = vdupq_n_f16(0.0);
const float16x8_t epsilon_vec = vdupq_n_f16(_epsilon);
execute_window_loop(window, [&](const Coordinates & id)
{
if(slice != id.z())
{
// Conctruct vectors
mean_vec = vdupq_n_f16(*(input_mean + id.z()));
var_vec = vdupq_n_f16(*(input_var + id.z()));
if(input_gamma != nullptr)
{
gamma_vec = vdupq_n_f16(*(input_gamma + id.z()));
}
if(input_beta != nullptr)
{
beta_vec = vdupq_n_f16(*(input_beta + id.z()));
}
// Calculate denominator
denominator = vinvsqrtq_f16(vaddq_f16(var_vec, epsilon_vec));
slice = id.z();
}
// Calculate x bar and store results
const float16x8_t numerator = vsubq_f16(vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr())), mean_vec);
const float16x8_t x_bar = vmulq_f16(numerator, denominator);
float16x8_t res = vaddq_f16(beta_vec, vmulq_f16(x_bar, gamma_vec));
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()), res);
},
input, output);
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc(const Window &window)
{
ARM_COMPUTE_UNUSED(window);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
Iterator input(_input, window);
Iterator output(_output, window);
F activation_functor(_act_info);
const auto input_mean = reinterpret_cast<const float16_t *>(_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const float16_t *>(_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float16_t *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (_beta != nullptr) ? reinterpret_cast<const float16_t *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
const float16x8_t epsilon_vec = vdupq_n_f16(_epsilon);
execute_window_loop(window, [&](const Coordinates & id)
{
// Conctruct vectors
const float16x8_t mean_vec = vld1q_f16(input_mean + id.x());
const float16x8_t var_vec = vld1q_f16(input_var + id.x());
const float16x8_t gamma_vec = (input_gamma != nullptr) ? vld1q_f16(input_gamma + id.x()) : vdupq_n_f16(1.0);
const float16x8_t beta_vec = (input_beta != nullptr) ? vld1q_f16(input_beta + id.x()) : vdupq_n_f16(0.0);
// Calculate denominator
const float16x8_t denominator = vinvsqrtq_f16(vaddq_f16(var_vec, epsilon_vec));
// Calculate x bar and store results
const float16x8_t numerator = vsubq_f16(vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr())), mean_vec);
const float16x8_t x_bar = vmulq_f16(numerator, denominator);
float16x8_t res = vaddq_f16(beta_vec, vmulq_f16(x_bar, gamma_vec));
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()), res);
},
input, output);
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}
template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw(const Window &window)
{
Iterator input(_input, window);
Iterator output(_output, window);
F activation_functor(_act_info);
// Hold information about the current feature map we are iterating.
// Only compute denominator and NEON vectors once per feature map.
int slice = -1;
const auto input_mean = reinterpret_cast<const float *>(_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const float *>(_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (_beta != nullptr) ? reinterpret_cast<const float *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
float32x4_t mean_vec = vdupq_n_f32(0.0);
float32x4_t var_vec = vdupq_n_f32(0.0);
float32x4_t gamma_vec = vdupq_n_f32(1.0);
float32x4_t beta_vec = vdupq_n_f32(0.0);
float32x4_t denominator = vdupq_n_f32(0.0);
const float32x4_t epsilon_vec = vdupq_n_f32(_epsilon);
execute_window_loop(window, [&](const Coordinates & id)
{
if(slice != id.z())
{
// Conctruct vectors
mean_vec = vdupq_n_f32(*(input_mean + id.z()));
var_vec = vdupq_n_f32(*(input_var + id.z()));
if(input_gamma != nullptr)
{
gamma_vec = vdupq_n_f32(*(input_gamma + id.z()));
}
if(input_beta != nullptr)
{
beta_vec = vdupq_n_f32(*(input_beta + id.z()));
}
// Calculate denominator
denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec));
slice = id.z();
}
// Calculate x bar
const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast<const float *>(input.ptr())), mean_vec);
const float32x4_t x_bar = vmulq_f32(numerator, denominator);
float32x4_t res = vmlaq_f32(beta_vec, x_bar, gamma_vec);
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
vst1q_f32(reinterpret_cast<float *>(output.ptr()), res);
},
input, output);
}
template <bool fused_activation, typename F>
void NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc(const Window &window)
{
Iterator input(_input, window);
Iterator output(_output, window);
F activation_functor(_act_info);
const auto input_mean = reinterpret_cast<const float *>(_mean->ptr_to_element(Coordinates(0, 0)));
const auto input_var = reinterpret_cast<const float *>(_var->ptr_to_element(Coordinates(0, 0)));
const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast<const float *>(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
const auto input_beta = (_beta != nullptr) ? reinterpret_cast<const float *>(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;
const float32x4_t epsilon_vec = vdupq_n_f32(_epsilon);
execute_window_loop(window, [&](const Coordinates & id)
{
// Conctruct vectors
const float32x4_t mean_vec = vld1q_f32(input_mean + id.x());
const float32x4_t var_vec = vld1q_f32(input_var + id.x());
const float32x4_t gamma_vec = (input_gamma != nullptr) ? vld1q_f32(input_gamma + id.x()) : vdupq_n_f32(1.0);
const float32x4_t beta_vec = (input_beta != nullptr) ? vld1q_f32(input_beta + id.x()) : vdupq_n_f32(0.0);
// Calculate denominator
const float32x4_t denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec));
// Calculate x bar
const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast<const float *>(input.ptr())), mean_vec);
const float32x4_t x_bar = vmulq_f32(numerator, denominator);
float32x4_t res = vmlaq_f32(beta_vec, x_bar, gamma_vec);
// Perform fused activation
if(fused_activation)
{
activation_functor(res);
}
// Store results
vst1q_f32(reinterpret_cast<float *>(output.ptr()), res);
},
input, output);
}
void NEBatchNormalizationLayerKernel::configure_non_fused()
{
const bool is_nhwc = _input->info()->data_layout() == DataLayout::NHWC;
switch(_input->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<false, ::detail::dummy<float16_t, 8>> :
&NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<false, ::detail::dummy<float16_t, 8>>;
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
_func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<false, ::detail::dummy<float, 4>> :
&NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<false, ::detail::dummy<float, 4>>;
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
void NEBatchNormalizationLayerKernel::configure_fused()
{
// NCHW Fused Batched Normalization with activation functions : FP32
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f32_nchw =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<true, ::detail::relu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<true, ::detail::brelu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw<true, ::detail::lubrelu<float, 4>> }
};
// NHWC Fused Batched Normalization with activation functions : FP32
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f32_nhwc =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<true, ::detail::relu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<true, ::detail::brelu<float, 4>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc<true, ::detail::lubrelu<float, 4>> }
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
// NCHW Fused Batched Normalization with activation functions : FP16
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f16_nchw =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<true, ::detail::relu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<true, ::detail::brelu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw<true, ::detail::lubrelu<float16_t, 8>> }
};
// NHWC Fused Batched Normalization with activation functions : FP16
static std::map<ActivationLayerInfo::ActivationFunction, BatchNormFunctionPtr> bn_fused_map_f16_nhwc =
{
{ ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<true, ::detail::relu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<true, ::detail::brelu<float16_t, 8>> },
{ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc<true, ::detail::lubrelu<float16_t, 8>> }
};
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
switch(_input->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f16_nhwc[_act_info.activation()] : bn_fused_map_f16_nchw[_act_info.activation()];
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
_func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f32_nhwc[_act_info.activation()] : bn_fused_map_f32_nchw[_act_info.activation()];
break;
default:
ARM_COMPUTE_ERROR("Element size not supported");
break;
}
}
NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon(), _act_info()
{
}
void NEBatchNormalizationLayerKernel::configure(ITensor *input, ITensor *output,
const ITensor *mean, const ITensor *var,
const ITensor *beta, const ITensor *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, mean, var);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr,
mean->info(), var->info(),
(beta != nullptr) ? beta->info() : nullptr,
(gamma != nullptr) ? gamma->info() : nullptr,
epsilon, act_info));
_input = input;
_output = input;
_mean = mean;
_var = var;
_gamma = gamma;
_beta = beta;
_epsilon = epsilon;
_act_info = act_info;
const bool run_in_place = (output == nullptr) || (output == input);
if(!run_in_place)
{
_output = output;
}
// Configure activation function to run
if(_act_info.enabled())
{
configure_fused();
}
else
{
configure_non_fused();
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), (run_in_place) ? nullptr : output->info(), mean->info(), var->info(), (gamma != nullptr) ? gamma->info() : nullptr,
(beta != nullptr) ? beta->info() : nullptr);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
Status NEBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output,
const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output ? output->clone().get() : nullptr, mean->clone().get(), var->clone().get(),
(gamma != nullptr) ? gamma->clone().get() : nullptr, (beta != nullptr) ? beta->clone().get() : nullptr)
.first);
return Status{};
}
void NEBatchNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(this->*_func)(window);
}