blob: 733d1372a139e04040698c9bf2ff5e3ba11e9b3e [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEArithmeticAdditionKernel.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include <algorithm>
#include <arm_neon.h>
#include <cstdint>
#include <map>
#include <string>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
namespace
{
template <typename T, bool is_sat>
void add_same(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window)
{
ARM_COMPUTE_UNUSED(policy);
/** NEON vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
constexpr int window_step_x = 16 / sizeof(T);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
const T broadcast_value = *reinterpret_cast<const T *>(broadcast_input.ptr());
const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
const auto res = is_sat ? wrapper::vqadd(broadcast_value_vec, non_broadcast_v) : wrapper::vadd(broadcast_value_vec, non_broadcast_v);
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
*(output_ptr + x) = is_sat ? wrapper::add_sat(broadcast_value, non_broadcast_v) : broadcast_value + non_broadcast_v;
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
const auto output_ptr = reinterpret_cast<T *>(output.ptr());
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto val1 = wrapper::vloadq(input1_ptr + x);
const auto val2 = wrapper::vloadq(input2_ptr + x);
const auto res = is_sat ? wrapper::vqadd(val1, val2) : wrapper::vadd(val1, val2);
wrapper::vstore(output_ptr + x, res);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const auto val1 = *(input1_ptr + x);
const auto val2 = *(input2_ptr + x);
*(output_ptr + x) = is_sat ? wrapper::add_sat(val1, val2) : val1 + val2;
}
},
input1, input2, output);
}
}
void add_QASYMM8_QASYMM8_QASYMM8(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window)
{
ARM_COMPUTE_UNUSED(policy);
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform();
const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale);
const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale);
const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale);
const int32x4_t voffset1 = vdupq_n_s32(iq1_info.offset);
const int32x4_t voffset2 = vdupq_n_s32(iq2_info.offset);
const float32x4_t voffseto = vdupq_n_f32(oq_info.offset);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
const uint8_t broadcast_value = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
const uint8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value);
const float32x4x4_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset2)), vscale2),
}
};
const float bfs = static_cast<int32_t>(broadcast_value - broadcast_qinfo.offset) * broadcast_qinfo.scale;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t a = vld1q_u8(non_broadcast_input_ptr + x);
const float32x4x4_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1),
}
};
const int32x4x4_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)),
#endif //__aarch64__
}
};
const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
vst1q_u8(output_ptr + x, vcombine_u8(pa, pb));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>(*(non_broadcast_input_ptr + x) - non_broadcast_qinfo.offset) * non_broadcast_qinfo.scale;
*(output_ptr + x) = quantize_qasymm8((afs + bfs), oq_info);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const uint8x16_t a = vld1q_u8(input1_ptr + x);
const uint8x16_t b = vld1q_u8(input2_ptr + x);
const float32x4x4_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1),
}
};
const float32x4x4_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(b))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(b))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(b))))), voffset2)), vscale2),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(b))))), voffset2)), vscale2),
}
};
const int32x4x4_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)),
vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)),
#endif //__aarch64__
}
};
const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
vst1q_u8(output_ptr + x, vcombine_u8(pa, pb));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>((*(input1_ptr + x)) - iq1_info.offset) * iq1_info.scale;
const float bfs = static_cast<int32_t>((*(input2_ptr + x)) - iq2_info.offset) * iq2_info.scale;
*(output_ptr + x) = quantize_qasymm8((afs + bfs), out->info()->quantization_info());
}
},
input1, input2, output);
}
}
void add_QSYMM16_QSYMM16_QSYMM16(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window)
{
ARM_COMPUTE_UNUSED(policy);
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform();
const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale);
const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale);
const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const int16_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
const int16_t broadcast_value = *reinterpret_cast<const int16_t *>(broadcast_input.ptr());
const int16x8_t broadcast_value_vec = vdupq_n_s16(broadcast_value);
const float32x4x2_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(broadcast_value_vec))), vscale2),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(broadcast_value_vec))), vscale2),
}
};
const float bfs = static_cast<int32_t>(broadcast_value) * broadcast_qinfo.scale;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8_t a = vld1q_s16(non_broadcast_input_ptr + x);
const float32x4x2_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1),
}
};
const int32x4x4_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
#endif //__aarch64__
}
};
const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
vst1q_s16(output_ptr + x, pa);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>(*(non_broadcast_input_ptr + x)) * non_broadcast_qinfo.scale;
*(output_ptr + x) = quantize_qsymm16((afs + bfs), oq_info);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const int16_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const int16x8_t a = vld1q_s16(input1_ptr + x);
const int16x8_t b = vld1q_s16(input2_ptr + x);
const float32x4x2_t af =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1),
}
};
const float32x4x2_t bf =
{
{
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(b))), vscale2),
vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(b))), vscale2),
}
};
const int32x4x2_t rf =
{
{
#ifdef __aarch64__
vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
#else //__aarch64__
vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)),
vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)),
#endif //__aarch64__
}
};
const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
vst1q_s16(output_ptr + x, pa);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const float afs = static_cast<int32_t>((*(input1_ptr + x))) * iq1_info.scale;
const float bfs = static_cast<int32_t>((*(input2_ptr + x))) * iq2_info.scale;
*(output_ptr + x) = quantize_qsymm16((afs + bfs), out->info()->quantization_info());
}
},
input1, input2, output);
}
}
void add_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
if(policy == ConvertPolicy::WRAP)
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = wrapper::vloadq(input1_ptr + x);
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
wrapper::vstore(output_ptr + x, wrapper::vadd(vin1, vin2));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = *(input1_ptr + x) + static_cast<int16_t>(*(input2_ptr + x));
}
}
else
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = wrapper::vloadq(input1_ptr + x);
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
wrapper::vstore(output_ptr + x, wrapper::vqadd(vin1, vin2));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = wrapper::add_sat(*(input1_ptr + x), static_cast<int16_t>(*(input2_ptr + x)));
}
}
},
input1, input2, output);
}
inline void add_U8_S16_S16(const ITensor *input1, const ITensor *input2, ITensor *output, ConvertPolicy policy, const Window &window)
{
// Simply swap the two input buffers:
add_S16_U8_S16(input2, input1, output, policy, window);
}
void add_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window)
{
// Create input windows
Window win = window;
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
win.set(Window::DimX, Window::Dimension(0, 1, 1));
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
if(policy == ConvertPolicy::WRAP)
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x)));
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
wrapper::vstore(output_ptr + x, wrapper::vadd(vin1, vin2));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = static_cast<int16_t>(*(input1_ptr + x)) + static_cast<int16_t>(*(input2_ptr + x));
}
}
else
{
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x)));
const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
wrapper::vstore(output_ptr + x, wrapper::vqadd(vin1, vin2));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
*(output_ptr + x) = wrapper::add_sat(static_cast<int16_t>(*(input1_ptr + x)),
static_cast<int16_t>(*(input2_ptr + x)));
}
}
},
input1, input2, output);
}
Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ConvertPolicy policy)
{
ARM_COMPUTE_UNUSED(policy);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((input1.tensor_shape().x() != input2.tensor_shape().x()) && ((input1.data_type() != input2.data_type()) || (input1.data_type() != output.data_type())
|| (input2.data_type() != output.data_type())),
"Broadcasting across width is supported on configurations where all tensors have the same data type");
// Validate in case of configured output
if(output.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
!(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::U8)
&& !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
&& !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32 && output.data_type() == DataType::F32)
&& !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16 && output.data_type() == DataType::F16)
&& !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && output.data_type() == DataType::QASYMM8)
&& !(input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16 && output.data_type() == DataType::QSYMM16),
"You called addition with the wrong image formats");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
"Wrong shape for output");
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
{
const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2);
const TensorShape &out_shape = broadcast_pair.first;
const ValidRegion &valid_region = broadcast_pair.second;
// Auto initialize output if not initialized
{
set_shape_if_empty(output, out_shape);
if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16)
{
set_format_if_unknown(output, Format::S16);
}
else if(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16)
{
set_format_if_unknown(output, Format::F16);
}
else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32)
{
set_format_if_unknown(output, Format::F32);
}
else if(input1.data_type() == DataType::QASYMM8)
{
set_data_type_if_unknown(output, DataType::QASYMM8);
}
else if(input1.data_type() == DataType::QSYMM16)
{
set_data_type_if_unknown(output, DataType::QSYMM16);
}
}
Window win = calculate_max_window(valid_region, Steps());
// NEArithmeticAdditionKernel doesn't need padding so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output.num_dimensions());
output.set_valid_region(valid_region);
return std::make_pair(Status{}, win);
}
} // namespace
NEArithmeticAdditionKernel::NEArithmeticAdditionKernel()
: _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _policy()
{
}
void NEArithmeticAdditionKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, ConvertPolicy policy)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info(), policy));
// Configure kernel window
auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
static std::map<std::string, AddFunction *> map_function =
{
{ "add_wrap_QASYMM8_QASYMM8_QASYMM8", &add_QASYMM8_QASYMM8_QASYMM8 },
{ "add_saturate_QASYMM8_QASYMM8_QASYMM8", &add_QASYMM8_QASYMM8_QASYMM8 },
{ "add_wrap_QSYMM16_QSYMM16_QSYMM16", &add_QSYMM16_QSYMM16_QSYMM16 },
{ "add_saturate_QSYMM16_QSYMM16_QSYMM16", &add_QSYMM16_QSYMM16_QSYMM16 },
{ "add_wrap_U8_U8_U8", &add_same<uint8_t, false> },
{ "add_saturate_U8_U8_U8", &add_same<uint8_t, true> },
{ "add_wrap_S16_U8_S16", &add_S16_U8_S16 },
{ "add_saturate_S16_U8_S16", &add_S16_U8_S16 },
{ "add_wrap_U8_S16_S16", &add_U8_S16_S16 },
{ "add_saturate_U8_S16_S16", &add_U8_S16_S16 },
{ "add_wrap_U8_U8_S16", &add_U8_U8_S16 },
{ "add_saturate_U8_U8_S16", &add_U8_U8_S16 },
{ "add_wrap_S16_S16_S16", &add_same<int16_t, false> },
{ "add_saturate_S16_S16_S16", &add_same<int16_t, true> },
{ "add_wrap_F32_F32_F32", &add_same<float, false> },
{ "add_saturate_F32_F32_F32", &add_same<float, false> },
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
{ "add_wrap_F16_F16_F16", &add_same<float16_t, false> },
{ "add_saturate_F16_F16_F16", &add_same<float16_t, false> },
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
};
_input1 = input1;
_input2 = input2;
_output = output;
_policy = policy;
std::string function_to_call("add_");
function_to_call += policy == ConvertPolicy::WRAP ? "wrap_" : "saturate_";
function_to_call += string_from_data_type(input1->info()->data_type()) + "_";
function_to_call += string_from_data_type(input2->info()->data_type()) + "_";
function_to_call += string_from_data_type(output->info()->data_type());
auto it = map_function.find(function_to_call);
if(it != map_function.end())
{
_func = it->second;
}
INEKernel::configure(win_config.second);
}
Status NEArithmeticAdditionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, policy));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(*input1->clone(), *input2->clone(), *output->clone()).first);
return Status{};
}
void NEArithmeticAdditionKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(*_func)(_input1, _input2, _output, _policy, window);
}