blob: a9c08703c0afaf492e790072027525386c2c1d0e [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLSoftmaxLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include <set>
#include <string>
using namespace arm_compute;
namespace
{
/** Calculates softmax parameters from the quantized input scale and scaling factor for the exponent and places them as build options.
*
* Prepares these build options:
* -INPUT_BETA_MULTIPLIER, INPUT_BETA_LEFT_SHIFT - quantized representation of beta multiplier.
* -DIFF_MIN - threshold difference between maximum value of input data and current processed value,
* it defines whether the value will be taken into account or not.
*
* @param[in] build_opts Build options to extend
* @param[in] input_scale Input scaling factor
* @param[in] beta Exponent scaling factor beta
*/
CLBuildOptions prepare_quantized_softmax_build_options(float input_scale, float beta)
{
// Number of integer bits in temporary fixed-point representation of current-to-max difference
static const int scaled_diff_int_bits = 5;
// Number of integer bits used in temporary fixed-point representation of exponent accumulator
static const int exp_accumulation_in_bits = 12;
const double beta_multiplier = std::min(
1.0 * beta * input_scale * (1 << (31 - scaled_diff_int_bits)),
(1LL << 31) - 1.0);
int input_beta_multiplier;
int input_beta_left_shift;
quantization::calculate_quantized_multiplier_greater_than_one(beta_multiplier, &input_beta_multiplier, &input_beta_left_shift);
const double max_input_rescaled = 1.0 * ((1 << scaled_diff_int_bits) - 1) * (1LL << (31 - scaled_diff_int_bits)) / (1LL << input_beta_left_shift);
const int diff_min = -1.f * std::floor(max_input_rescaled);
CLBuildOptions build_opts;
build_opts.add_option("-DSCALED_DIFF_INT_BITS=" + support::cpp11::to_string(scaled_diff_int_bits));
build_opts.add_option("-DEXP_ACCUMULATION_INT_BITS=" + support::cpp11::to_string(exp_accumulation_in_bits));
build_opts.add_option("-DINPUT_BETA_MULTIPLIER=" + support::cpp11::to_string(input_beta_multiplier));
build_opts.add_option("-DINPUT_BETA_LEFT_SHIFT=" + support::cpp11::to_string(input_beta_left_shift));
build_opts.add_option("-DDIFF_MIN=" + support::cpp11::to_string(diff_min));
return build_opts;
}
Status validate_arguments_1DMaxShiftExpSum(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(max, sum, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, max);
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->data_type());
// Checks performed when output is configured
if(output->total_size() != 0)
{
if(is_quantized_asymmetric)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
}
// Checks performed when sum is configured
if(sum->total_size() != 0)
{
if(is_quantized_asymmetric)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(sum, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(max, sum);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(max, sum);
}
return Status{};
}
Status validate_arguments_1DNorm(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(sum, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, sum);
// Note: output should always have a scale of 1/256 and offset 0
const QuantizationInfo allowed_quantization_info = QuantizationInfo(1.f / 256, 0);
const bool is_quantized_asymmetric = (input->data_type() == DataType::S32);
// Checks performed when output is configured
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
if(!is_quantized_asymmetric)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON(output->quantization_info() != allowed_quantization_info);
}
}
return Status{};
}
// Window validation
std::pair<Status, Window> validate_and_configure_window_1DMaxShiftExpSum(ITensorInfo *input, ITensorInfo *max, ITensorInfo *output, ITensorInfo *sum)
{
// Output auto initialization if not yet initialized
auto_init_if_empty(*sum, input->clone()->set_tensor_shape(max->tensor_shape()));
auto_init_if_empty(*output, *input->clone());
CLLogits1DMaxShiftExpSumKernel::ParallelReductionInfo parallel_reduction_info = CLLogits1DMaxShiftExpSumKernel::is_parallel_reduction(input->dimension(0));
unsigned int vector_size = std::get<1>(parallel_reduction_info);
const unsigned int num_elems_x = ceil_to_multiple(input->tensor_shape().x(), vector_size);
Window win = calculate_max_window(*input, Steps(num_elems_x));
AccessWindowHorizontal input_access(input, 0, num_elems_x);
AccessWindowHorizontal max_access(max, 0, 1);
AccessWindowHorizontal output_access(output, 0, num_elems_x);
AccessWindowHorizontal sum_access(sum, 0, 1);
bool window_changed = update_window_and_padding(win, input_access, max_access, output_access, sum_access);
output_access.set_valid_region(win, input->valid_region());
sum_access.set_valid_region(win, ValidRegion(Coordinates(), sum->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
std::pair<Status, Window> validate_and_configure_window_1DNorm(ITensorInfo *input, ITensorInfo *output, ITensorInfo *sum)
{
const QuantizationInfo allowed_quantization_info = QuantizationInfo(1.f / 256, 0);
const bool is_quantized_asymmetric = (input->data_type() == DataType::S32);
const DataType output_data_type = is_quantized_asymmetric ? DataType::QASYMM8 : input->data_type();
// Output auto initialization if not yet initialized
auto_init_if_empty(*output,
input->clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));
constexpr unsigned int num_elems_processed_per_iteration = 16;
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
AccessWindowStatic sum_access(sum, 0, 0, 1, sum->dimension(1));
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win, input_access, sum_access, output_access);
output_access.set_valid_region(win, input->valid_region());
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
/**< Grid size (obtained through auto-tuning) */
const unsigned int CLLogits1DMaxShiftExpSumKernel::_grid_size = 64;
/**< Vector size in the serial case (obtained through auto-tuning) */
const unsigned int CLLogits1DMaxShiftExpSumKernel::_serial_vector_size = 8;
/**< Vector size in the parallel case (obtained through auto-tuning, enables the best memory access pattern for Bifrost) .*/
const unsigned int CLLogits1DMaxShiftExpSumKernel::_parallel_vector_size = 4;
CLLogits1DMaxShiftExpSumKernel::CLLogits1DMaxShiftExpSumKernel()
: _input(nullptr), _max(nullptr), _output(nullptr), _sum(nullptr)
{
}
void CLLogits1DMaxShiftExpSumKernel::configure(const ICLTensor *input, ICLTensor *max, ICLTensor *output, ICLTensor *sum, float beta)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, sum, output);
// Output auto initialization if not yet initialized
auto_init_if_empty(*sum->info(), input->info()->clone()->set_tensor_shape(max->info()->tensor_shape()));
auto_init_if_empty(*output->info(), *input->info()->clone());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DMaxShiftExpSum(input->info(), max->info(), output->info(), sum->info()));
_input = input;
_max = max;
_output = output;
_sum = sum;
const DataType dt = input->info()->data_type();
const UniformQuantizationInfo qinfo = input->info()->quantization_info().uniform();
const size_t reduction_dim_size = input->info()->dimension(0);
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(dt));
build_opts.add_option_if(dt == DataType::F16, "-DUSE_F16");
build_opts.add_option_if(is_data_type_float(dt) && (beta != 1.0f), "-DBETA=" + float_to_string_with_full_precision(beta));
build_opts.add_options_if(is_data_type_quantized_asymmetric(dt), prepare_quantized_softmax_build_options(qinfo.scale, beta).options());
cl::NDRange lws_hint(cl::NullRange);
std::string kernel_name = is_data_type_quantized_asymmetric(dt) ? std::string("softmax_layer_max_shift_exp_sum_quantized_serial") :
std::string("softmax_layer_max_shift_exp_sum_serial");
ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(reduction_dim_size);
unsigned int vector_size = std::get<1>(parallel_reduction_info);
build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
build_opts.add_option("-DLOG_VECTOR_SIZE=" + support::cpp11::to_string(lround(log2(vector_size))));
build_opts.add_option_if((reduction_dim_size % vector_size) != 0, "-DNON_MULTIPLE_OF_VECTOR_SIZE");
// Configure parallel kernel if needed
if(std::get<0>(parallel_reduction_info))
{
kernel_name = is_data_type_quantized_asymmetric(dt) ? std::string("softmax_layer_max_shift_exp_sum_quantized_parallel") : std::string("softmax_layer_max_shift_exp_sum_parallel");
bool is_grid_size_pow2 = (_grid_size != 0) && ((_grid_size & (_grid_size - 1)) == 0);
build_opts.add_option_if(is_grid_size_pow2 && _grid_size <= 256, "-DGRID_SIZE=" + support::cpp11::to_string(_grid_size));
// Handle boundary conditions.
const unsigned int multiple_grid_size = (reduction_dim_size / vector_size) % _grid_size;
build_opts.add_option_if((multiple_grid_size != 0) || ((reduction_dim_size % vector_size) != 0), "-DNON_MULTIPLE_OF_GRID_SIZE");
// Setting _lws_hint in this way can also communicate grid_size to CLLogits1DMaxShiftExpSumKernel::run().
// A single workgroup performs reduction in dimension 0 in the parallel case, hence lws[0]==gws[0].
lws_hint = cl::NDRange(_grid_size);
}
// Create kernel.
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Set static arguments. Both the kernels use the same arguments
unsigned int idx = 4 * num_arguments_per_3D_tensor(); //Skip the input and output parameters
_kernel.setArg<cl_uint>(idx++, reduction_dim_size);
// Configure window
auto win_config = validate_and_configure_window_1DMaxShiftExpSum(input->info(), max->info(), output->info(), sum->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second, lws_hint);
}
Status CLLogits1DMaxShiftExpSumKernel::validate(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DMaxShiftExpSum(input, max, output, sum));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_1DMaxShiftExpSum(input->clone().get(), max->clone().get(), output->clone().get(), sum->clone().get()).first);
return Status{};
}
CLLogits1DMaxShiftExpSumKernel::ParallelReductionInfo CLLogits1DMaxShiftExpSumKernel::is_parallel_reduction(size_t size)
{
bool is_parallel_reduction = (size >= (_grid_size * _serial_vector_size)) && (_grid_size > 1);
unsigned int vector_size = is_parallel_reduction ? _parallel_vector_size : _serial_vector_size;
return std::make_tuple(is_parallel_reduction, vector_size);
}
void CLLogits1DMaxShiftExpSumKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
// Collapse window in Z dimension
Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
// Reconfigure window in case of parallel reduction
ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(_input->info()->dimension(0));
if(std::get<0>(parallel_reduction_info))
{
// To launch grid_size parallel workitems, steps.x should be modified as follows.
const unsigned int step = std::get<1>(parallel_reduction_info);
window_collapsed.set(Window::DimX, Window::Dimension(0, _grid_size * step, step));
}
// Get slices
Window slice = window_collapsed.first_slice_window_3D();
do
{
unsigned int idx = 0;
// Set inputs
add_3D_tensor_argument(idx, _input, slice);
add_3D_tensor_argument(idx, _max, slice);
add_3D_tensor_argument(idx, _output, slice);
add_3D_tensor_argument(idx, _sum, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window_collapsed.slide_window_slice_3D(slice));
}
CLLogits1DNormKernel::CLLogits1DNormKernel()
: _input(nullptr), _sum(nullptr), _output(nullptr)
{
}
void CLLogits1DNormKernel::configure(const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, float beta)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output);
// Note: output should always have a scale of 1/256 and offset 0
const QuantizationInfo allowed_quantization_info = QuantizationInfo(1.F / 256, 0);
const bool is_quantized_asymmetric = (input->info()->data_type() == DataType::S32);
const DataType output_data_type = is_quantized_asymmetric ? DataType::QASYMM8 : input->info()->data_type();
const UniformQuantizationInfo qinfo = input->info()->quantization_info().uniform();
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(),
input->info()->clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DNorm(input->info(), sum->info(), output->info()));
_input = input;
_sum = sum;
_output = output;
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
build_opts.add_options_if(is_quantized_asymmetric,
prepare_quantized_softmax_build_options(qinfo.scale, beta).options());
// Create kernel
std::string kernel_name = is_quantized_asymmetric ? "softmax_layer_norm_quantized" : "softmax_layer_norm";
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Configure window
auto win_config = validate_and_configure_window_1DNorm(input->info(), output->info(), sum->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
}
Status CLLogits1DNormKernel::validate(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DNorm(input, sum, output));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_1DNorm(input->clone().get(), output->clone().get(), sum->clone().get()).first);
return Status{};
}
void CLLogits1DNormKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
Window slice = window_collapsed.first_slice_window_3D();
do
{
Window sum_slice = slice;
sum_slice.set(Window::DimX, Window::Dimension(0, 1, 1));
unsigned int idx = 0;
// Set inputs
add_3D_tensor_argument(idx, _input, slice);
add_3D_tensor_argument(idx, _sum, sum_slice);
add_3D_tensor_argument(idx, _output, slice);
enqueue(queue, *this, slice, lws_hint());
}
while(window_collapsed.slide_window_slice_3D(slice));
}