blob: cda7a83de73fa1852901eafa4df3c2a233ae4a95 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "support/ToolchainSupport.h"
#include <cstddef>
#include <cstdint>
#include <tuple>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
namespace
{
using ElementsProcessed = Steps;
Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMReshapeInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the matrix B must be <= 3");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 2 && gemm_info.reinterpret_input_as_3d(), "The input1 tensor cannot have more than 2 dimensions if input0 has to be reinterpreted as 3D");
const int m = gemm_info.m();
const int n = gemm_info.n();
const int k = gemm_info.k();
ARM_COMPUTE_UNUSED(m);
ARM_COMPUTE_UNUSED(n);
ARM_COMPUTE_UNUSED(k);
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != static_cast<unsigned int>(k));
ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != static_cast<unsigned int>(n));
ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(1) != static_cast<unsigned int>(k));
if(gemm_info.reinterpret_input_as_3d())
{
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) * input0->dimension(2) != static_cast<unsigned int>(m));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != static_cast<unsigned int>(m));
}
if(output->total_size() != 0)
{
const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, false, gemm_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, const GEMMReshapeInfo &gemm_info, ElementsProcessed &num_elements_processed)
{
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
bool reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
Window win{};
Window win_out{};
bool window_changed = false;
// In case both input and output have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(reinterpret_input_as_3d == reinterpret_output_as_3d)
{
reinterpret_input_as_3d = false;
reinterpret_output_as_3d = false;
}
// Output tensor auto inizialitation if not yet initialized
auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, false, gemm_info)).set_data_type(DataType::S32));
TensorInfo tmp_info(*output);
if(reinterpret_output_as_3d)
{
// Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(output->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
// Special case for 1xN, 2xN, 3xN and 4xN input0 tensor. num_elems_processed_per_iteration_x
// Note: if the dot product instruction is available, the 8x2 tile has to be used
num_elems_processed_per_iteration_x = 4;
num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 4);
// Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
// The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
const int m = reinterpret_input_as_3d ? input0->tensor_shape()[1] * input0->tensor_shape()[2] : input0->tensor_shape()[1];
const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;
// Configure window
win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic input0_access(input0, 0, 0, input0->dimension(0), input0->dimension(1) + bottom_pad);
AccessWindowStatic input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
AccessWindowStatic output_access(output, 0, 0,
ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration_x),
output->dimension(1) + bottom_pad);
window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output_access.set_valid_region(win_out, ValidRegion(coord, output->tensor_shape()));
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
Window collapsed = win;
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
collapsed = win.collapse(win, dimension_to_collapse);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
CLGEMMLowpMatrixMultiplyKernel::CLGEMMLowpMatrixMultiplyKernel()
: _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false)
{
}
void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, const GEMMReshapeInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), gemm_info));
_input0 = input0;
_input1 = input1;
_output = output;
_reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d();
_reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
// In case both input and output have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
{
_reinterpret_input_as_3d = false;
_reinterpret_output_as_3d = false;
}
// Check if we need to slide the matrix B
const unsigned int num_dimensions_input0 = _reinterpret_input_as_3d ? _input0->info()->num_dimensions() - 1 : _input0->info()->num_dimensions();
_slide_matrix_b = (_input1->info()->num_dimensions() >= num_dimensions_input0);
ElementsProcessed num_elements_processed{};
// Configure kernel window
auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), gemm_info, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
// Create build options
std::string kernel_name(" ");
CLBuildOptions build_opts;
build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
build_opts.add_option("-DCOLS_A=" + support::cpp11::to_string(input0->info()->dimension(0)));
build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_X=" + support::cpp11::to_string(num_elements_processed.x()));
build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_Y=" + support::cpp11::to_string(num_elements_processed.y()));
kernel_name = "gemmlowp_mm_midgard";
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += (_reinterpret_input_as_3d ? "3di_" : "");
_config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += lower_string(string_from_data_type(input0->info()->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
}
Status CLGEMMLowpMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMReshapeInfo &gemm_info)
{
ElementsProcessed num_elements_processed{};
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, gemm_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
input1->clone().get(),
output->clone().get(),
gemm_info,
num_elements_processed)
.first);
return Status{};
}
void CLGEMMLowpMatrixMultiplyKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
if(_input1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
}
Window slice = window.first_slice_window_3D();
Window slice_matrix_b = slice;
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
if(_reinterpret_input_as_3d)
{
// Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3;
const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
if(_reinterpret_output_as_3d)
{
// Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the matrix multiplication is used to perform a convolution operation
if(!_slide_matrix_b)
{
slice_b = slice_matrix_b;
}
unsigned int idx = 0;
add_2D_tensor_argument(idx, _input0, slice);
add_2D_tensor_argument(idx, _input1, slice_b);
add_2D_tensor_argument(idx, _output, slice);
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
enqueue(queue, *this, slice, lws_hint());
}
while(window.slide_window_slice_3D(slice));
}