blob: a69e84a16d2c2c9f67a756834ecf4715d1985586 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLElementwiseOperationKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include <map>
namespace arm_compute
{
namespace
{
constexpr unsigned int num_elems_processed_per_iteration = 16;
std::map<ArithmeticOperation, std::string> supported_arithmetic_ops =
{
{ ArithmeticOperation::ADD, "ADD" },
{ ArithmeticOperation::SUB, "SUB" },
{ ArithmeticOperation::DIV, "DIV" },
{ ArithmeticOperation::SQUARED_DIFF, "SQUARED_DIFF" },
{ ArithmeticOperation::MIN, "MIN" },
{ ArithmeticOperation::MAX, "MAX" },
{ ArithmeticOperation::POWER, "POWER" },
{ ArithmeticOperation::PRELU, "PRELU" },
};
std::map<ArithmeticOperation, std::string> supported_sat_arithmetic_ops =
{
{ ArithmeticOperation::ADD, "ADD" },
{ ArithmeticOperation::SUB, "SUB" },
};
std::string generate_id_for_tuning_common(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output)
{
std::string config_id;
// Set config_id for enabling LWS tuning
config_id = kernel_name;
config_id += "_";
config_id += lower_string(string_from_data_type(input1.data_type()));
config_id += "_";
config_id += support::cpp11::to_string(output.dimension(0));
config_id += "_";
config_id += support::cpp11::to_string(output.dimension(1));
return config_id;
}
Status validate_arguments_with_float_only_supported_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(&input1, &input2, &output);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// Validate in case of configured output
if(output.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
"Wrong shape for output");
}
return Status{};
}
Status validate_arguments_with_arithmetic_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input2);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
const bool is_quantized = is_data_type_quantized(input1.data_type()) || is_data_type_quantized(input2.data_type());
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
if(is_data_type_quantized_symmetric(input1.data_type()))
{
const int32_t in1_offset = input1.quantization_info().uniform().offset;
const int32_t in2_offset = input2.quantization_info().uniform().offset;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_offset != 0, "For quantized symmetric, offset must be zero");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(in2_offset != 0, "For quantized symmetric, offset must be zero");
}
}
const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// Validate in case of configured output
if(output.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((output.data_type() == DataType::U8) && ((input1.data_type() != DataType::U8) || (input2.data_type() != DataType::U8)),
"Output can only be U8 if both inputs are U8");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
"Wrong shape for output");
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
if(is_data_type_quantized_symmetric(output.data_type()))
{
const int32_t offset = output.quantization_info().uniform().offset;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(offset != 0, "For quantized symmetric, offset must be zero");
}
}
}
return Status{};
}
CLBuildOptions generate_build_options_with_arithmetic_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, const std::string &operation_string)
{
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1.data_type()));
build_opts.add_option("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2.data_type()));
build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output.data_type()));
build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
build_opts.add_option("-DOP=" + operation_string);
if(is_data_type_quantized(input1.data_type()))
{
const UniformQuantizationInfo iq1info = input1.quantization_info().uniform();
const UniformQuantizationInfo iq2info = input2.quantization_info().uniform();
const UniformQuantizationInfo oqinfo = output.quantization_info().uniform();
build_opts.add_option("-DOFFSET_IN1=" + support::cpp11::to_string(iq1info.offset));
build_opts.add_option("-DOFFSET_IN2=" + support::cpp11::to_string(iq2info.offset));
build_opts.add_option("-DOFFSET_OUT=" + support::cpp11::to_string(oqinfo.offset));
build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq1info.scale));
build_opts.add_option("-DSCALE_IN2=" + float_to_string_with_full_precision(iq2info.scale));
build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oqinfo.scale));
}
return build_opts;
}
std::pair<Status, Window> configure_window_arithmetic_common(const ValidRegion &valid_region, ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
{
Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
Window win_input1 = win.broadcast_if_dimension_le_one(input1);
Window win_input2 = win.broadcast_if_dimension_le_one(input2);
AccessWindowHorizontal input1_access(&input1, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal input2_access(&input2, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(&output, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win_input1, input1_access)
|| update_window_and_padding(win_input2, input2_access)
|| update_window_and_padding(win, output_access);
output_access.set_valid_region(win, valid_region);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
std::pair<Status, Window> validate_and_configure_window_for_arithmetic_operators(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
{
const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2);
const TensorShape &out_shape = broadcast_pair.first;
const ValidRegion &valid_region = broadcast_pair.second;
set_shape_if_empty(output, out_shape);
if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16)
{
set_format_if_unknown(output, Format::S16);
}
else if(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16)
{
set_format_if_unknown(output, Format::F16);
}
else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32)
{
set_format_if_unknown(output, Format::F32);
}
else if(input1.data_type() == DataType::QASYMM8 || input2.data_type() == DataType::QASYMM8)
{
set_data_type_if_unknown(output, DataType::QASYMM8);
}
else if(input1.data_type() == DataType::QSYMM16 || input2.data_type() == DataType::QSYMM16)
{
set_data_type_if_unknown(output, DataType::QSYMM16);
}
return configure_window_arithmetic_common(valid_region, input1, input2, output);
}
std::pair<Status, Window> validate_and_configure_window_for_division(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
{
const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2);
const TensorShape &out_shape = broadcast_pair.first;
const ValidRegion &valid_region = broadcast_pair.second;
auto_init_if_empty(output, out_shape, 1, input1.data_type());
return configure_window_arithmetic_common(valid_region, input1, input2, output);
}
} // namespace
CLElementwiseOperationKernel::CLElementwiseOperationKernel()
: _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}
void CLElementwiseOperationKernel::configure_common(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info()));
// Configure kernel window
auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
_input1 = input1;
_input2 = input2;
_output = output;
std::string kernel_name = "elementwise_operation_" + name();
if(is_data_type_quantized(input1->info()->data_type()))
{
kernel_name += "_quantized";
}
// Set kernel build options
CLBuildOptions build_opts = generate_build_options(*input1->info(), *input2->info(), *output->info());
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
ICLKernel::configure_internal(win_config.second);
_config_id = generate_id_for_tuning(kernel_name, *input1->info(), *output->info());
}
void CLElementwiseOperationKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const TensorShape &in_shape1 = _input1->info()->tensor_shape();
const TensorShape &in_shape2 = _input2->info()->tensor_shape();
const TensorShape &out_shape = _output->info()->tensor_shape();
bool can_collapse = true;
const bool is_vector = in_shape1.num_dimensions() == 1 || in_shape2.num_dimensions() == 1;
if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1 && !is_vector)
{
can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++)
{
can_collapse = (in_shape1[d] == in_shape2[d]);
}
}
bool has_collapsed = false;
Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;
const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
Window slice = collapsed.first_slice_window_3D();
Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input1, slice_input1);
add_3D_tensor_argument(idx, _input2, slice_input2);
add_3D_tensor_argument(idx, _output, slice);
enqueue(queue, *this, slice, lws_hint());
ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
}
while(collapsed.slide_window_slice_3D(slice));
}
BorderSize CLElementwiseOperationKernel::border_size() const
{
const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
return BorderSize{ 0, border, 0, 0 };
}
/** Arithmetic operations with saturation*/
void CLSaturatedArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, const ConvertPolicy &policy)
{
_policy = policy;
_op = op;
configure_common(input1, input2, output);
}
Status CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy)
{
ARM_COMPUTE_UNUSED(op, policy);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first);
return Status{};
}
std::pair<Status, Window> CLSaturatedArithmeticOperationKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
{
return validate_and_configure_window_for_arithmetic_operators(input1, input2, output);
}
Status CLSaturatedArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
return validate_arguments_with_arithmetic_rules(input1, input2, output);
}
CLBuildOptions CLSaturatedArithmeticOperationKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
const bool has_float_out = is_data_type_float(output.data_type());
auto build_options = generate_build_options_with_arithmetic_rules(input1, input2, output, name());
build_options.add_option((_policy == ConvertPolicy::WRAP || has_float_out) ? "-DWRAP" : "-DSATURATE");
return build_options;
}
std::string CLSaturatedArithmeticOperationKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output)
{
auto config_id = generate_id_for_tuning_common(kernel_name, input1, output);
config_id += (_policy == ConvertPolicy::WRAP) ? "_wrap_" : "_saturate_";
config_id += lower_string(string_from_data_layout(input1.data_layout()));
return config_id;
}
std::string CLSaturatedArithmeticOperationKernel::name()
{
return supported_sat_arithmetic_ops[_op];
}
/** Arithmetic operations*/
void CLArithmeticOperationKernel::configure(ArithmeticOperation op, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output)
{
_op = op;
configure_common(input1, input2, output);
}
Status CLArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
if(op == ArithmeticOperation::DIV || op == ArithmeticOperation::POWER)
{
// Division and Power operators don't support integer arithmetic
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_float_only_supported_rules(*input1, *input2, *output));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_division(*input1->clone(), *input2->clone(), *output->clone()).first);
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first);
}
return Status{};
}
std::pair<Status, Window> CLArithmeticOperationKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
{
if(_op == ArithmeticOperation::DIV || _op == ArithmeticOperation::POWER)
{
// Division and Power operators don't support integer arithmetic
return validate_and_configure_window_for_division(input1, input2, output);
}
else
{
return validate_and_configure_window_for_arithmetic_operators(input1, input2, output);
}
}
Status CLArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
if(_op == ArithmeticOperation::DIV || _op == ArithmeticOperation::POWER)
{
// Division and Power operators don't support integer arithmetic
return validate_arguments_with_float_only_supported_rules(input1, input2, output);
}
else
{
return validate_arguments_with_arithmetic_rules(input1, input2, output);
}
}
CLBuildOptions CLArithmeticOperationKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
return generate_build_options_with_arithmetic_rules(input1, input2, output, name());
}
std::string CLArithmeticOperationKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output)
{
return generate_id_for_tuning_common(kernel_name, input1, output);
}
std::string CLArithmeticOperationKernel::name()
{
return supported_arithmetic_ops[_op];
}
} // namespace arm_compute