blob: 42e5fbc8f29a75f56aec611263919af36f97f858 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/CLValidate.h"
#include "arm_compute/core/CL/ICLKernel.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
const ActivationLayerInfo &act_info, const Size2D dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((act_info.enabled()) && (input->data_type() == DataType::QASYMM8) && (act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
&& (act_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
&& (act_info.activation() != ActivationLayerInfo::ActivationFunction::RELU)
&& (act_info.activation() != ActivationLayerInfo::ActivationFunction::LOGISTIC),
"For QASYMM8 only logistic, relu, lower bounded relu and lower-upper bounded relu are supported");
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != 3 || weights->dimension(1) != 3);
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1 || conv_info.stride().first > 3);
ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
if(biases != nullptr)
{
if(is_qasymm)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON((biases->dimension(0) != weights->dimension(2)) && (weights->dimension(2) != 1 || biases->dimension(0) != weights->dimension(3)));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
if(output->total_size() != 0)
{
const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
}
if(is_qasymm)
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = (output->total_size() != 0) ? output->quantization_info().uniform() : iq_info;
float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
ARM_COMPUTE_UNUSED(multiplier);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
GPUTarget gpu_target, std::string &kernel_name, const Size2D dilation)
{
// Output auto inizialitation if not yet initialized
const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_quantization_info(output->quantization_info()));
const unsigned int conv_stride_x = conv_info.stride().first;
const unsigned int conv_stride_y = conv_info.stride().second;
const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
const bool is_bifrost = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;
// Configure kernel window
unsigned int num_elems_read_per_iteration_x = 0;
unsigned int num_elems_read_per_iteration_y = 0;
unsigned int num_elems_written_per_iteration_x = 0;
unsigned int num_elems_written_per_iteration_y = 0;
if(input->data_type() == DataType::F16)
{
kernel_name = "depthwise_convolution_3x3_f16";
num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
num_elems_written_per_iteration_y = 1;
num_elems_read_per_iteration_y = 3;
switch(conv_stride_x)
{
case 1:
num_elems_read_per_iteration_x = 8;
break;
case 2:
num_elems_read_per_iteration_x = 9;
break;
case 3:
num_elems_read_per_iteration_x = 16;
break;
default:
num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
break;
}
if(is_bifrost)
{
if(conv_stride_x == 1 && conv_stride_y == 1)
{
kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16";
num_elems_read_per_iteration_x = 8;
num_elems_written_per_iteration_x = 4;
num_elems_read_per_iteration_y = 6;
num_elems_written_per_iteration_y = 4;
}
else if(conv_stride_x == 2 && conv_stride_y == 2)
{
kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16";
num_elems_read_per_iteration_x = 10;
num_elems_written_per_iteration_x = 4;
num_elems_read_per_iteration_y = 5;
num_elems_written_per_iteration_y = 2;
}
}
}
else if(input->data_type() == DataType::F32 && is_bifrost)
{
if(conv_stride_x == 1 && conv_stride_y == 1)
{
kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32";
num_elems_read_per_iteration_x = 4;
num_elems_read_per_iteration_y = 6;
num_elems_written_per_iteration_x = 2;
num_elems_written_per_iteration_y = 4;
}
else if(conv_stride_x == 2 && conv_stride_y == 2)
{
kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32";
num_elems_read_per_iteration_x = 6;
num_elems_read_per_iteration_y = 5;
num_elems_written_per_iteration_x = 2;
num_elems_written_per_iteration_y = 2;
}
else
{
kernel_name = "depthwise_convolution_3x3";
num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
num_elems_written_per_iteration_y = 1;
num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
num_elems_read_per_iteration_y = 3;
}
}
else
{
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
kernel_name = is_qasymm ? "dwc_3x3_native_qasymm8" : "depthwise_convolution_3x3";
kernel_name += (is_qasymm && is_dot8_supported ? "_dot8" : "");
kernel_name += (is_qasymm ? "_nchw" : "");
num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
num_elems_written_per_iteration_y = (is_qasymm && conv_stride_y == 1 && dilation.y() == 1) ? 2 : 1;
num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x + (conv_stride_x > 1 ? 1 : 0);
num_elems_read_per_iteration_y = num_elems_written_per_iteration_y + 2;
}
num_elems_read_per_iteration_x += (num_elems_read_per_iteration_x - 1) * (dilation.x() - 1);
num_elems_read_per_iteration_y += (num_elems_read_per_iteration_y - 1) * (dilation.y() - 1);
// Create window and update padding
Window win = calculate_max_window(*output, Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y));
AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(),
num_elems_read_per_iteration_x, num_elems_read_per_iteration_y,
conv_stride_x, conv_stride_y);
AccessWindowStatic weights_access(weights, 0, 0, 3, 3);
AccessWindowRectangle output_access(output, 0, 0, num_elems_written_per_iteration_x, num_elems_written_per_iteration_y);
bool window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLDepthwiseConvolutionLayer3x3NCHWKernel::CLDepthwiseConvolutionLayer3x3NCHWKernel()
: _conv_stride_x(0), _conv_pad_top(0), _conv_pad_left(0)
{
}
BorderSize CLDepthwiseConvolutionLayer3x3NCHWKernel::border_size() const
{
return _border_size;
}
void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info, dilation));
bool is_qasymm = is_data_type_quantized_asymmetric(input->info()->data_type());
_input = input;
_output = output;
_weights = weights;
_biases = biases;
_conv_stride_x = conv_info.stride().first;
_conv_stride_y = conv_info.stride().second;
_conv_pad_left = conv_info.pad_left();
_conv_pad_top = conv_info.pad_top();
_border_size = BorderSize(_conv_pad_top, conv_info.pad_right(), conv_info.pad_bottom(), _conv_pad_left);
// Configure kernel window
std::string kernel_name;
const GPUTarget gpu_target = get_target();
auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, depth_multiplier, gpu_target, kernel_name, dilation);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
// Set build options
CLBuildOptions build_opts;
build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(_output->info()->tensor_shape().z()));
build_opts.add_option("-DDEPTH_MULTIPLIER=" + support::cpp11::to_string(depth_multiplier));
build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(_conv_stride_x));
build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
if(is_qasymm)
{
const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = _weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform();
float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
int output_multiplier = 0;
int output_shift = 0;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(_conv_stride_y));
build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iq_info.offset));
build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wq_info.offset));
build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oq_info.offset));
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(9 * iq_info.offset * wq_info.offset));
build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
if(act_info.enabled())
{
const int a_val = quantize_qasymm8(act_info.a(), oq_info);
const int b_val = quantize_qasymm8(act_info.b(), oq_info);
const int o1 = oq_info.offset;
build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val));
build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val));
build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1));
const float s1 = iq_info.scale;
build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1));
build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
}
}
else
{
build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
build_opts.add_option_if(act_info.enabled(), "-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(win_config.second.x().step()));
}
build_opts.add_option_if(input->info()->data_type() == DataType::F16, "-DIS_F16");
build_opts.add_option_if(input->info()->data_type() == DataType::F32, "-DIS_F32");
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += lower_string(string_from_data_type(input->info()->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(input->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
}
Status CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation)
{
std::string kernel_name;
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(), conv_info, depth_multiplier, gpu_target, kernel_name, dilation).first);
return Status{};
}
void CLDepthwiseConvolutionLayer3x3NCHWKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
// Create input window and adjust
Window collapsed_in = collapsed;
collapsed_in.adjust(Window::DimX, -_conv_pad_left, true);
collapsed_in.adjust(Window::DimY, -_conv_pad_top, true);
collapsed_in.set_dimension_step(Window::DimX, collapsed_in.x().step() * _conv_stride_x);
collapsed_in.set_dimension_step(Window::DimY, collapsed_in.y().step() * _conv_stride_y);
Window slice_in = collapsed_in.first_slice_window_3D();
Window slice_out = collapsed.first_slice_window_3D();
Window slice_weights = window.first_slice_window_3D();
slice_weights.set_dimension_step(Window::DimX, 0);
slice_weights.set_dimension_step(Window::DimY, 0);
// Set biases
if(_biases != nullptr)
{
unsigned int idx = 3 * num_arguments_per_3D_tensor();
Window slice_biases;
slice_biases.use_tensor_dimensions(_biases->info()->tensor_shape());
add_1D_tensor_argument(idx, _biases, slice_biases);
}
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, _input, slice_in);
add_3D_tensor_argument(idx, _output, slice_out);
add_3D_tensor_argument(idx, _weights, slice_weights);
enqueue(queue, *this, slice_out, lws_hint());
}
while(collapsed.slide_window_slice_3D(slice_out) && collapsed_in.slide_window_slice_3D(slice_in));
}