blob: 126614a5994f3abef4501099b2f6fb416bcbfd8c [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLChannelCombineKernel.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLMultiImage.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/MultiImageInfo.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <set>
#include <string>
namespace arm_compute
{
namespace
{
constexpr unsigned int num_elems_processed_per_iteration = 16;
} // namespace
CLChannelCombineKernel::CLChannelCombineKernel()
: _planes{ { nullptr } }, _output(nullptr), _output_multi(nullptr), _x_subsampling{ { 1, 1, 1 } }, _y_subsampling{ { 1, 1, 1 } }
{
}
void CLChannelCombineKernel::configure(const ICLTensor *plane0, const ICLTensor *plane1, const ICLTensor *plane2, const ICLTensor *plane3, ICLTensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(output);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::RGB888, Format::RGBA8888, Format::YUYV422, Format::UYVY422);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);
const Format output_format = output->info()->format();
// Check if horizontal dimension of Y plane is even and validate horizontal sub-sampling dimensions for U and V planes
if(Format::YUYV422 == output_format || Format::UYVY422 == output_format)
{
// Validate Y plane of input and output
ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output);
// Validate U and V plane of the input
ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2);
}
_planes[0] = plane0;
_planes[1] = plane1;
_planes[2] = plane2;
_planes[3] = nullptr;
// Validate the last input tensor only for RGBA format
if(Format::RGBA8888 == output_format)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(plane3);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane3);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane3, Format::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane3, 1, DataType::U8);
_planes[3] = plane3;
}
_output = output;
_output_multi = nullptr;
// Half the processed elements for U and V channels due to horizontal sub-sampling of 2
if(Format::YUYV422 == output_format || Format::UYVY422 == output_format)
{
_x_subsampling[1] = 2;
_x_subsampling[2] = 2;
}
// Create kernel
std::string kernel_name = "channel_combine_" + string_from_format(output_format);
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name));
// Configure window
Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal plane0_access(plane0->info(), 0, num_elems_processed_per_iteration);
AccessWindowRectangle plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
AccessWindowRectangle plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
AccessWindowHorizontal plane3_access(plane3 == nullptr ? nullptr : plane3->info(), 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);
update_window_and_padding(win, plane0_access, plane1_access, plane2_access, plane3_access, output_access);
ValidRegion valid_region = intersect_valid_regions(plane0->info()->valid_region(),
plane1->info()->valid_region(),
plane2->info()->valid_region());
if(plane3 != nullptr)
{
valid_region = intersect_valid_regions(plane3->info()->valid_region(), valid_region);
}
output_access.set_valid_region(win, ValidRegion(valid_region.anchor, output->info()->tensor_shape()));
ICLKernel::configure_internal(win);
}
void CLChannelCombineKernel::configure(const ICLImage *plane0, const ICLImage *plane1, const ICLImage *plane2, ICLMultiImage *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::NV12, Format::NV21, Format::IYUV, Format::YUV444);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);
const Format output_format = output->info()->format();
// Validate shape of Y plane to be even and shape of sub-sampling dimensions for U and V planes
// Perform validation only for formats which require sub-sampling.
if(Format::YUV444 != output_format)
{
// Validate Y plane of input and output
ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output->plane(0));
// Validate U and V plane of the input
ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2);
// Validate second plane U (NV12 and NV21 have a UV88 combined plane while IYUV has only the U plane)
// MultiImage generates the correct tensor shape but also check in case the tensor shape of planes was changed to a wrong size
ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(1));
// Validate the last plane V of format IYUV
if(Format::IYUV == output_format)
{
// Validate Y plane of the output
ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(2));
}
}
// Set input tensors
_planes[0] = plane0;
_planes[1] = plane1;
_planes[2] = plane2;
_planes[3] = nullptr;
// Set output tensor
_output = nullptr;
_output_multi = output;
bool has_two_planars = false;
// Set sub-sampling parameters for each plane
std::string kernel_name;
std::set<std::string> build_opts;
if(Format::NV12 == output_format || Format::NV21 == output_format)
{
_x_subsampling = { { 1, 2, 2 } };
_y_subsampling = { { 1, 2, 2 } };
kernel_name = "channel_combine_NV";
build_opts.emplace(Format::NV12 == output_format ? "-DNV12" : "-DNV21");
has_two_planars = true;
}
else
{
if(Format::IYUV == output_format)
{
_x_subsampling = { { 1, 2, 2 } };
_y_subsampling = { { 1, 2, 2 } };
}
kernel_name = "copy_planes_3p";
build_opts.emplace(Format::IYUV == output_format ? "-DIYUV" : "-DYUV444");
}
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts));
// Configure window
Window win = calculate_max_window(*plane0->info(), Steps(num_elems_processed_per_iteration));
AccessWindowRectangle input_plane0_access(plane0->info(), 0, 0, num_elems_processed_per_iteration, 1.f);
AccessWindowRectangle input_plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
AccessWindowRectangle input_plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
AccessWindowRectangle output_plane0_access(output->plane(0)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f, 1.f / _y_subsampling[1]);
AccessWindowRectangle output_plane1_access(output->plane(1)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
AccessWindowRectangle output_plane2_access(has_two_planars ? nullptr : output->plane(2)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
update_window_and_padding(win,
input_plane0_access, input_plane1_access, input_plane2_access,
output_plane0_access, output_plane1_access, output_plane2_access);
ValidRegion plane0_valid_region = plane0->info()->valid_region();
ValidRegion output_plane1_region = has_two_planars ? intersect_valid_regions(plane1->info()->valid_region(), plane2->info()->valid_region()) : plane2->info()->valid_region();
output_plane0_access.set_valid_region(win, ValidRegion(plane0_valid_region.anchor, output->plane(0)->info()->tensor_shape()));
output_plane1_access.set_valid_region(win, ValidRegion(output_plane1_region.anchor, output->plane(1)->info()->tensor_shape()));
output_plane2_access.set_valid_region(win, ValidRegion(plane2->info()->valid_region().anchor, output->plane(2)->info()->tensor_shape()));
ICLKernel::configure_internal(win);
}
void CLChannelCombineKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
Window slice = window.first_slice_window_2D();
slice.set_dimension_step(Window::DimY, 1);
do
{
// Subsampling in plane 1
Window win_sub_plane1(slice);
win_sub_plane1.set(Window::DimX, Window::Dimension(win_sub_plane1.x().start() / _x_subsampling[1], win_sub_plane1.x().end() / _x_subsampling[1], win_sub_plane1.x().step() / _x_subsampling[1]));
win_sub_plane1.set(Window::DimY, Window::Dimension(win_sub_plane1.y().start() / _y_subsampling[1], win_sub_plane1.y().end() / _y_subsampling[1], 1));
// Subsampling in plane 2
Window win_sub_plane2(slice);
win_sub_plane2.set(Window::DimX, Window::Dimension(win_sub_plane2.x().start() / _x_subsampling[2], win_sub_plane2.x().end() / _x_subsampling[2], win_sub_plane2.x().step() / _x_subsampling[2]));
win_sub_plane2.set(Window::DimY, Window::Dimension(win_sub_plane2.y().start() / _y_subsampling[2], win_sub_plane2.y().end() / _y_subsampling[2], 1));
unsigned int idx = 0;
// Set inputs
add_2D_tensor_argument(idx, _planes[0], slice);
add_2D_tensor_argument(idx, _planes[1], win_sub_plane1);
add_2D_tensor_argument(idx, _planes[2], win_sub_plane2);
add_2D_tensor_argument_if((nullptr != _planes[3]), idx, _planes[3], slice);
// Set outputs
if(nullptr != _output) // Single planar output
{
add_2D_tensor_argument(idx, _output, slice);
}
else // Multi-planar output
{
// Reduce slice in case of subsampling to avoid out-of bounds access
slice.set(Window::DimY, Window::Dimension(slice.y().start() / _y_subsampling[1], slice.y().end() / _y_subsampling[1], 1));
add_2D_tensor_argument(idx, _output_multi->cl_plane(0), slice);
add_2D_tensor_argument(idx, _output_multi->cl_plane(1), win_sub_plane1);
add_2D_tensor_argument_if((3 == num_planes_from_format(_output_multi->info()->format())), idx, _output_multi->cl_plane(2), win_sub_plane2);
_kernel.setArg(idx++, slice.y().end());
}
enqueue(queue, *this, slice);
}
while(window.slide_window_slice_2D(slice));
}
} // namespace arm_compute