blob: b496fcf562acc410046a3f4b6a60ef3cfdb5e0af [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "warp_helpers.h"
#if defined(DATA_TYPE) && defined(OPERATION)
// Calculate exponential
#define exp_op(input) exp(input)
// Calculate reverse square root
#define rsqrt_op(input) rsqrt(input)
// Calculate negative
#define neg_op(input) (-input)
// Calculate sine
#define sin_op(input) sin(input)
// Calculate abs for floating point values
#define fabs_op(input) fabs(input)
// Calculate natural_log
#define natural_log_op(input) log(input)
// Calculate round (Cannot use round function as it rounds halfway cases away from zero).
#if defined(VEC_SIZE)
#define round_op(input) CONVERT(CONVERT_SAT_ROUND(input, VEC_DATA_TYPE(int, VEC_SIZE), rte), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))
#else // defined(VEC_SIZE
#define round_op(input) CONVERT(CONVERT_SAT_ROUND(input, int, rte), DATA_TYPE)
#endif // defined(VEC_SIZE
/** Applies element wise unary operator in a tensor.
*
* @param[in] in_ptr Pointer to the source image. Supported data types: F16/32.
* @param[in] in_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] in_step_x in_stride_x * number of elements along X processed per work item (in bytes)
* @param[in] in_offset_first_element_in_bytes Offset of the first element in the source image
* @param[out] out_ptr Pointer to the destination image. Supported data types: F16/32.
* @param[in] out_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] out_step_y out_stride_y * number of elements along Y processed per work item (in bytes)
* @param[in] out_offset_first_element_in_bytes Offset of the first element in the destination image
*/
__kernel void elementwise_unary(
VECTOR_DECLARATION(in),
VECTOR_DECLARATION(out))
{
Vector in = CONVERT_TO_VECTOR_STRUCT(in);
Vector out = CONVERT_TO_VECTOR_STRUCT(out);
#if defined(VEC_SIZE) && defined(LAST_ACCESSED_X)
// Check if access on width gets out of bounds
// If it does shift access vector to access elements within bounds
const int xi = (int)(get_global_id(0) * VEC_SIZE);
in.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * in_stride_x;
out.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * out_stride_x;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr);
VSTORE(VEC_SIZE)
(OPERATION(data), 0, (__global DATA_TYPE *)out.ptr);
#else // !defined(VEC_SIZE) || !defined(LAST_ACCESSED_X)
*((__global DATA_TYPE *)(out.ptr)) = (DATA_TYPE)(OPERATION(*((__global DATA_TYPE *)in.ptr)));
#endif // defined(VEC_SIZE) && defined(LAST_ACCESSED_X)
}
#endif // defined(DATA_TYPE) && defined(OPERATION)