blob: 8d0417a31d9752516eb1623d823fe345471f8610 [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#undef CONVERT_SAT
#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC)
#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))
#define CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \
DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE); \
acc += src0 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s345, src0.s67, src1.s012) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s4567, src1.s0123) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s567, src1.s0123, src1.s4) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s67, src1.s012, src1.s345) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s7, src1.s0123, src1.s456) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7; \
acc += src1 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1; \
})
#define CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 16) \
src0 = (VEC_DATA_TYPE(DATA_TYPE, 16))( \
PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(row_ptr + 16 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 17 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 18 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 19 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 20 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 21 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 22 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 23 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \
DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE); \
acc += src0.s02468ACE * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s3579, src0.sBDF, src1.s1) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s468A, src0.sCE, src1.s02) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s579, src0.sBDF, src1.s13) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s68A, src0.sCE, src1.s024) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s79B, src0.sDF, src1.s135) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s8AC, src0.sE, src1.s0246) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1; \
})
#if defined(VEC_SIZE)
#define VFMA(acc, w, src0, src1, src2, src3, src4, src5, src6, src7) \
({ \
acc##0 = fma(src0, w, acc##0); \
acc##1 = fma(src1, w, acc##1); \
acc##2 = fma(src2, w, acc##2); \
acc##3 = fma(src3, w, acc##3); \
acc##4 = fma(src4, w, acc##4); \
acc##5 = fma(src5, w, acc##5); \
acc##6 = fma(src6, w, acc##6); \
acc##7 = fma(src7, w, acc##7); \
})
#define CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)row_ptr); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 2 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 3 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 4 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 5 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 6 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 7 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 8 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 9 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 10 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 11 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 12 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 13 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 14 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 15 * src_stride_y)); \
\
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 0 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 1 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 2 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 3 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 4 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 5 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 6 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 7 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 8 * weights_stride_y)); \
\
VFMA(acc, w0, src0, src1, src2, src3, src4, src5, src6, src7); \
VFMA(acc, w1, src1, src2, src3, src4, src5, src6, src7, src8); \
VFMA(acc, w2, src2, src3, src4, src5, src6, src7, src8, src9); \
VFMA(acc, w3, src3, src4, src5, src6, src7, src8, src9, src10); \
VFMA(acc, w4, src4, src5, src6, src7, src8, src9, src10, src11); \
VFMA(acc, w5, src5, src6, src7, src8, src9, src10, src11, src12); \
VFMA(acc, w6, src6, src7, src8, src9, src10, src11, src12, src13); \
VFMA(acc, w7, src7, src8, src9, src10, src11, src12, src13, src14); \
VFMA(acc, w8, src8, src9, src10, src11, src12, src13, src14, src15); \
})
#if VEC_SIZE == 4
#define REDUCE(out, vec) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
tmp1 = vec.s01 + vec.s23; \
out = tmp1.s0 + tmp1.s1; \
})
#else // VEC_SIZE == 4
#error("Not supported")
#endif // VEC_SIZE == 4
#if STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr)
#else // STRIDE_X == 1
#error "Not supported"
#endif // STRIDE_X == 1
#else // defined(VEC_SIZE)
#if STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr)
#elif STRIDE_X == 2 // STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr)
#else // STRIDE_X == 1
#error "STRIDE_X larger than 2 is not supported"
#endif // STRIDE_X == 1
#endif // defined(VEC_SIZE)
//#if defined(VEC_SIZE)
/** This kernel performs a direct convolution to convolve the low three dimensions in a tensor with the NHWC data layout
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note If biases are used then -DHAS_BIAS has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr (Optional) Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
* @param[in] weights_stride_w (Optional) Stride of the weights tensor in the 4th dimension
*/
__kernel void direct_convolution9x9_nhwc(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
VEC_DATA_TYPE(DATA_TYPE, 8)
values = 0;
#if defined(VEC_SIZE)
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values0 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values1 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values2 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values3 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values4 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values5 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values6 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values7 = 0;
#define STEP_X (VEC_SIZE)
#else // defined(VEC_SIZE)
#define STEP_X (1)
#endif // defined(VEC_SIZE)
const int id0 = get_global_id(0);
const int id1 = get_global_id(1);
const int id2 = get_global_id(2);
__global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0);
__global uchar *src_addr = (__global uchar *)offset(&src, 0, 0) - src_stride_x * id0 + ((id2 * STRIDE_Y) - PAD_TOP) * (int)src_stride_z;
weights_addr += id0 * weights_stride_w;
#if(PAD_TOP == 1)
const int coordy = id2 - PAD_TOP;
for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
{
if(coordy < 0) // special case Z = -1 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
else if(coordy == (DST_HEIGHT - PAD_TOP - 1))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
}
else
{
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
src_addr += STEP_X * sizeof(DATA_TYPE);
weights_addr += STEP_X * sizeof(DATA_TYPE);
}
#elif(PAD_TOP == 2) // PAD_TOP == 1
const int coordy = id2 * STRIDE_Y;
for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
{
if(coordy == 0) // special case Z = -2 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
else if(coordy == 1) // special case Z = -1 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
else if(coordy == (SRC_HEIGHT - 5))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
}
else if(coordy == (SRC_HEIGHT - 6))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
}
else
{
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
src_addr += STEP_X * sizeof(DATA_TYPE);
weights_addr += STEP_X * sizeof(DATA_TYPE);
}
#else // PAD_TOP == 1
for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
{
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
src_addr += STEP_X * sizeof(DATA_TYPE);
weights_addr += STEP_X * sizeof(DATA_TYPE);
}
#endif // PAD_TOP == 1
#if defined(VEC_SIZE)
REDUCE(values.s0, values0);
REDUCE(values.s1, values1);
REDUCE(values.s2, values2);
REDUCE(values.s3, values3);
REDUCE(values.s4, values4);
REDUCE(values.s5, values5);
REDUCE(values.s6, values6);
REDUCE(values.s7, values7);
#endif // defined(VEC_SIZE)
#if defined(HAS_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
values += (VEC_DATA_TYPE(DATA_TYPE, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, id0)));
#endif // defined(HAS_BIAS)
*((__global DATA_TYPE *)(dst.ptr + 0 * dst_stride_y)) = values.s0;
*((__global DATA_TYPE *)(dst.ptr + 1 * dst_stride_y)) = values.s1;
*((__global DATA_TYPE *)(dst.ptr + 2 * dst_stride_y)) = values.s2;
*((__global DATA_TYPE *)(dst.ptr + 3 * dst_stride_y)) = values.s3;
*((__global DATA_TYPE *)(dst.ptr + 4 * dst_stride_y)) = values.s4;
*((__global DATA_TYPE *)(dst.ptr + 5 * dst_stride_y)) = values.s5;
*((__global DATA_TYPE *)(dst.ptr + 6 * dst_stride_y)) = values.s6;
*((__global DATA_TYPE *)(dst.ptr + 7 * dst_stride_y)) = values.s7;
#undef STEP_X
}
#endif // defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC)