blob: 918caff212c9f15e2387648f9a37c43970edbf2b [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#define ADD_OP(a, b) ((a) + (b))
#define SUB_OP(a, b) ((a) - (b))
#define MUL_OP(a, b) ((a) * (b))
#define INVSQRT_OP(a) rsqrt((a))
#define SQCVT_SAT(a) (a)
#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(ACTIVATION_TYPE)
#include "activation_float_helpers.h"
/** Apply batch normalization.
*
* @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
* @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
*
* @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p input_ptr
* @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p input_ptr
* @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p input_ptr
* @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor
* @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p input_ptr
* @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor
* @param[in] epsilon Epsilon parameter in the batch normalization equation
*/
__kernel void batchnormalization_layer_nchw(TENSOR3D_DECLARATION(input),
#ifndef IN_PLACE
TENSOR3D_DECLARATION(output),
#endif /* not IN_PLACE */
VECTOR_DECLARATION(mean),
VECTOR_DECLARATION(var),
#ifndef USE_DEFAULT_BETA
VECTOR_DECLARATION(beta),
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
VECTOR_DECLARATION(gamma),
#endif /* USE_DEFAULT_GAMMA */
float epsilon)
{
Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D out = in;
#else /* IN_PLACE */
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
Vector mean = CONVERT_TO_VECTOR_STRUCT(mean);
Vector var = CONVERT_TO_VECTOR_STRUCT(var);
#ifndef USE_DEFAULT_BETA
Vector beta = CONVERT_TO_VECTOR_STRUCT(beta);
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
Vector gamma = CONVERT_TO_VECTOR_STRUCT(gamma);
#endif /* USE_DEFAULT_GAMMA */
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
data = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
denominator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
numerator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
x_bar = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res = 0;
const int current_slice = get_global_id(2);
data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr);
denominator = *((__global DATA_TYPE *)(var.ptr + current_slice * var.stride_x));
denominator = INVSQRT_OP(ADD_OP(denominator, ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(epsilon))));
// Calculate x bar and store results
numerator = *((__global DATA_TYPE *)(mean.ptr + current_slice * mean.stride_x));
numerator = SUB_OP(data, numerator);
x_bar = MUL_OP(numerator, denominator);
#ifndef USE_DEFAULT_GAMMA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
gamma_vec = *((__global DATA_TYPE *)(gamma.ptr + current_slice * gamma.stride_x));
res = MUL_OP(gamma_vec, x_bar);
#else /* USE_DEFAULT_GAMMA */
// gamma is equal to 1, no need to perform multiplications
res = x_bar;
#endif /* USE_DEFAULT_GAMMA */
#ifndef USE_DEFAULT_BETA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
beta_vec = *((__global DATA_TYPE *)(beta.ptr + current_slice * beta.stride_x));
// beta is not zero, hence we need to perform the addition
res = ADD_OP(res, beta_vec);
#endif /* USE_DEFAULT_BETA */
res = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, res, A_VAL, B_VAL);
VSTORE(VEC_SIZE)
(res, 0, (__global DATA_TYPE *)out.ptr);
}
/** Apply batch normalization on tensors with NHWC format.
*
* @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
* @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
*
* @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p input_ptr
* @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p input_ptr
* @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p input_ptr
* @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor
* @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p input_ptr
* @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor
* @param[in] epsilon Epsilon parameter in the batch normalization equation
*/
__kernel void batchnormalization_layer_nhwc(TENSOR3D_DECLARATION(input),
#ifndef IN_PLACE
TENSOR3D_DECLARATION(output),
#endif /* not IN_PLACE */
VECTOR_DECLARATION(mean),
VECTOR_DECLARATION(var),
#ifndef USE_DEFAULT_BETA
VECTOR_DECLARATION(beta),
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
VECTOR_DECLARATION(gamma),
#endif /* USE_DEFAULT_GAMMA */
float epsilon)
{
Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D out = in;
#else /* IN_PLACE */
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
Vector mean = CONVERT_TO_VECTOR_STRUCT(mean);
Vector var = CONVERT_TO_VECTOR_STRUCT(var);
#ifndef USE_DEFAULT_BETA
Vector beta = CONVERT_TO_VECTOR_STRUCT(beta);
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
Vector gamma = CONVERT_TO_VECTOR_STRUCT(gamma);
#endif /* USE_DEFAULT_GAMMA */
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
data = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
denominator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
numerator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
x_bar = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res = 0;
const int current_slice = get_global_id(0);
data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr);
denominator = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(var.ptr + current_slice * VEC_SIZE * var.stride_x));
denominator = INVSQRT_OP(ADD_OP(denominator, ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(epsilon))));
// Calculate x bar and store results
numerator = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(mean.ptr + current_slice * VEC_SIZE * mean.stride_x));
numerator = SUB_OP(data, numerator);
x_bar = MUL_OP(numerator, denominator);
#ifndef USE_DEFAULT_GAMMA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
gamma_vec = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(gamma.ptr + current_slice * VEC_SIZE * gamma.stride_x));
res = MUL_OP(gamma_vec, x_bar);
#else /* USE_DEFAULT_GAMMA */
// gamma is equal to 1, no need to perform multiplications
res = x_bar;
#endif /* USE_DEFAULT_GAMMA */
#ifndef USE_DEFAULT_BETA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
beta_vec = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(beta.ptr + current_slice * VEC_SIZE * beta.stride_x));
// beta is not zero, hence we need to perform the addition
res = ADD_OP(res, beta_vec);
#endif /* USE_DEFAULT_BETA */
res = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, res, A_VAL, B_VAL);
VSTORE(VEC_SIZE)
(res, 0, (__global DATA_TYPE *)out.ptr);
}
#endif /* defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE)*/
#if defined(DATA_TYPE) && defined(EPSILON)
/** OpenCL kernel to fuse the weights of convolution or depthwise convolution layer with batch normalization when the data layout is either NCHW or NHWC
*
* @note The input weights tensor is assumed 4D with the OFMs in the fourth dimension
* @note Data type should be passed at compile time using the -DDATA_TYPE, e.g. -DDATA_TYPE=float
* @note The third dimension of the input tensor should be passed at compile time when weights belong to a convolution layer using -DDIM2=size. e.g. -DDIM2=16.
* For depthwise convolution weight do not pass DIM2
* @note Data layout NHWC should be passed at compile time with -DNHWC. For data layout NCHW it is not required to pass any parameter
* @note Batch normalization epsilon parameter should be passed at compile time using -DEPSILON=value. e.g. -DEPSILON=0.001f
*
* @param[in] w_ptr Pointer to the weights tensor. Supported data types: F16/F32
* @param[in] w_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] w_step_x w_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] w_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] w_step_y w_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] w_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] w_step_z w_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] w_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] b_ptr (Optional) Pointer to the bias tensor. Supported data types: same as @p w_ptr
* @param[in] b_stride_x (Optional) Stride of the bias tensor in X dimension (in bytes)
* @param[in] b_step_x (Optional) b_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] b_stride_y (Optional) Stride of the bias tensor in Y dimension (in bytes)
* @param[in] b_step_y (Optional) b_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] b_stride_z (Optional) Stride of the bias tensor in Z dimension (in bytes)
* @param[in] b_step_z (Optional) b_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] b_offset_first_element_in_bytes (Optional) The offset of the first element in the bias tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p w_ptr
* @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p w_ptr
* @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[out] w_fused_ptr (Optional) Pointer to the destination weights tensors. Supported data types: same as @p w_ptr
* @param[in] w_fused_stride_x (Optional) Stride of the destination weights tensor in X dimension (in bytes)
* @param[in] w_fused_step_x (Optional) w_fused_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] w_fused_stride_y (Optional) Stride of the destination weights tensor in Y dimension (in bytes)
* @param[in] w_fused_step_y (Optional) w_fused_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] w_fused_stride_z (Optional) Stride of the destination weights tensor in Z dimension (in bytes)
* @param[in] w_fused_step_z (Optional) w_fused_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] w_fused_offset_first_element_in_bytes (Optional) The offset of the first element in the destination weights tensor
* @param[in] b_fused_ptr (Optional) Pointer to the destination bias tensor. Supported data types: same as @p w_ptr
* @param[in] b_fused_stride_x (Optional) Stride of the destination bias tensor in X dimension (in bytes)
* @param[in] b_fused_step_x (Optional) b_fused_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] b_fused_offset_first_element_in_bytes (Optional) The offset of the first element in the destination bias tensor
* @param[in] beta_ptr (Optional) Pointer to the beta source tensor. Supported data types: same as @p w_ptr
* @param[in] beta_stride_x (Optional) Stride of the beta source tensor in X dimension (in bytes)
* @param[in] beta_step_x (Optional) beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] beta_offset_first_element_in_bytes (Optional) The offset of the first element in the beta source tensor
* @param[in] gamma_ptr (Optional) Pointer to the gamma source tensor. Supported data types: same as @p w_ptr
* @param[in] gamma_stride_x (Optional) Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] gamma_step_x (Optional) gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gamma_offset_first_element_in_bytes (Optional) The offset of the first element in the gamma source tensor
*/
__kernel void fuse_batchnormalization_layer(TENSOR3D_DECLARATION(w),
#if defined(BIAS)
VECTOR_DECLARATION(b),
#endif // defined(BIAS)
VECTOR_DECLARATION(mean),
VECTOR_DECLARATION(var)
#ifndef IN_PLACE_W
,
TENSOR3D_DECLARATION(w_fused)
#endif // ifndef IN_PLACE_W
#ifndef IN_PLACE_B
,
VECTOR_DECLARATION(b_fused)
#endif // ifndef IN_PLACE_B
#if defined(BETA)
,
VECTOR_DECLARATION(beta)
#endif // defined(BETA)
#if defined(GAMMA)
,
VECTOR_DECLARATION(gamma)
#endif // defined(GAMMA)
)
{
int x = get_global_id(0);
int y = get_global_id(1);
int z = get_global_id(2);
#if defined(DIM2)
int c0 = z % DIM2;
int c1 = z / DIM2;
#else // ! defined(DIM2)
int c0 = 0;
#if defined(NHWC)
int c1 = x;
#else // defined(NHWC)
int c1 = z;
#endif // defined(NHWC)
#endif // defined(DIM2)
int w_offset = x * sizeof(DATA_TYPE) + y * w_stride_y + z * w_stride_z;
int v_offset = c1 * sizeof(DATA_TYPE);
DATA_TYPE w_old = 0.0f;
DATA_TYPE b_old = 0.0f;
DATA_TYPE w_new = 0.0f;
DATA_TYPE b_new = 0.0f;
DATA_TYPE gamma = 1.0f;
DATA_TYPE mean = 0.0f;
DATA_TYPE var = 1.0f;
DATA_TYPE beta = 0.0f;
w_old = *((__global DATA_TYPE *)(w_ptr + w_offset + w_offset_first_element_in_bytes));
var = *((__global DATA_TYPE *)(var_ptr + v_offset + var_offset_first_element_in_bytes));
mean = *((__global DATA_TYPE *)(mean_ptr + v_offset + mean_offset_first_element_in_bytes));
#if defined(GAMMA)
gamma = *((__global DATA_TYPE *)(gamma_ptr + v_offset + gamma_offset_first_element_in_bytes));
#endif // defined(GAMMA)
// Compute new weight
w_new = (gamma * w_old) / (sqrt(var + EPSILON));
#if defined(IN_PLACE_W)
*((__global DATA_TYPE *)(w_ptr + w_offset + w_offset_first_element_in_bytes)) = w_new;
#else // defined(IN_PLACE_W)
*((__global DATA_TYPE *)(w_fused_ptr + w_offset + w_fused_offset_first_element_in_bytes)) = w_new;
#endif // defined(IN_PLACE_W)
// Compute bias
#if !defined(DIM2) && defined(NHWC)
if(z == 0 && y == 0)
#else !defined(DIM2) && defined(NHWC)
if(x == 0 && y == 0 && c0 == 0)
#endif // !defined(DIM2) && defined(NHWC)
{
#if defined(BIAS)
b_old = *((__global DATA_TYPE *)(b_ptr + v_offset + b_offset_first_element_in_bytes));
#endif // defined(BIAS)
#if defined(BETA)
beta = *((__global DATA_TYPE *)(beta_ptr + v_offset + beta_offset_first_element_in_bytes));
#endif // defined(BETA)
b_new = ((gamma * (b_old - mean)) / (sqrt(var + EPSILON))) + beta;
#if defined(BIAS)
#if defined(IN_PLACE_B)
*((__global DATA_TYPE *)(b_ptr + v_offset + b_offset_first_element_in_bytes)) = b_new;
#else // defined(IN_PLACE_B)
*((__global DATA_TYPE *)(b_fused_ptr + v_offset + b_fused_offset_first_element_in_bytes)) = b_new;
#endif // defined(IN_PLACE_B)
#else // defined(BIAS)
#ifndef IN_PLACE_B
*((__global DATA_TYPE *)(b_fused_ptr + v_offset + b_fused_offset_first_element_in_bytes)) = b_new;
#endif // ifndef IN_PLACE_B
#endif // defined(BIAS)
}
}
#endif // defined(DATA_TYPE) && defined(EPSILON)