blob: 9d164150f5a20e75a7d1ccdd4d604524e3c71a9e [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_UTILS_HELPERS_FLOAT_OPS_H__
#define __ARM_COMPUTE_UTILS_HELPERS_FLOAT_OPS_H__
namespace arm_compute
{
namespace helpers
{
namespace float_ops
{
union RawFloat
{
/** Constructor
*
* @param[in] val Floating-point value
*/
explicit RawFloat(float val)
: f32(val)
{
}
/** Extract sign of floating point number
*
* @return Sign of floating point number
*/
int32_t sign() const
{
return i32 >> 31;
}
/** Extract exponent of floating point number
*
* @return Exponent of floating point number
*/
int32_t exponent() const
{
return (i32 >> 23) & 0xFF;
}
/** Extract mantissa of floating point number
*
* @return Mantissa of floating point number
*/
int32_t mantissa() const
{
return i32 & 0x007FFFFF;
}
int32_t i32;
float f32;
};
/** Checks if two floating point numbers are equal given an allowed number of ULPs
*
* @param[in] a First number to compare
* @param[in] b Second number to compare
* @param[in] max_allowed_ulps (Optional) Number of allowed ULPs
*
* @return True if number is close else false
*/
inline bool is_equal_ulps(float a, float b, int max_allowed_ulps = 0)
{
RawFloat ra(a);
RawFloat rb(b);
// Check ULP distance
const int ulps = std::abs(ra.i32 - rb.i32);
return ulps <= max_allowed_ulps;
}
/** Checks if the input floating point number is 1.0f checking if the difference is within a range defined with epsilon
*
* @param[in] a Input floating point number
* @param[in] epsilon (Optional) Epsilon used to define the error bounds
*
* @return True if number is close to 1.0f
*/
inline bool is_one(float a, float epsilon = 0.00001f)
{
return std::abs(1.0f - a) <= epsilon;
}
/** Checks if the input floating point number is 0.0f checking if the difference is within a range defined with epsilon
*
* @param[in] a Input floating point number
* @param[in] epsilon (Optional) Epsilon used to define the error bounds
*
* @return True if number is close to 0.0f
*/
inline bool is_zero(float a, float epsilon = 0.00001f)
{
return std::abs(0.0f - a) <= epsilon;
}
} // namespace float_ops
} // namespace helpers
} // namespace arm_compute
#endif /* __ARM_COMPUTE_UTILS_HELPERS_FLOAT_OPS_H__ */