blob: 40b6f5da3942286c087e010648bda393f3b96072 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_NEGEMMINTERLEAVEDMATRIXMULTIPLYWRAPPER_H__
#define __ARM_COMPUTE_NEGEMMINTERLEAVEDMATRIXMULTIPLYWRAPPER_H__
#include "arm_compute/core/NEON/kernels/assembly/Helpers.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/kernels/assembly/INEGEMMWrapperKernel.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/WindowIterator.h"
namespace arm_compute
{
class ITensor;
/** Unit of work for @ref NEGEMMInterleavedMatrixMultiplyWrapper to process */
struct MatrixMultiplyWorkload
{
/** Constructor
*
* @param[in] offset_transformed_b Offset from the start of transformed_b's allocation.
* @param[in] x0 First value to process along the X dimension (N).
* @param[in] xmax Last value to process along the X dimension (N).
* @param[in] k0 First value to process along the K dimension.
* @param[in] kmax Last value to process along the K dimension.
* @param[in] multi Multi index.
* @param[in] kern_k Number of elements along K actually processed by the kernel.
* @param[in] bblocks Number of x_block processed by the kernel.
*/
MatrixMultiplyWorkload(unsigned int offset_transformed_b, unsigned int x0, unsigned int xmax, unsigned int k0, unsigned int kmax, unsigned int multi, int kern_k, int bblocks)
: _offset_transformed_b(offset_transformed_b), _x0(x0), _xmax(xmax), _k0(k0), _kmax(kmax), _multi(multi), _kern_k(kern_k), _bblocks(bblocks)
{
}
unsigned int _offset_transformed_b; /**< Offset from the start of transformed_b's allocation.*/
unsigned int _x0; /**< First value to process along the X dimension (N). */
unsigned int _xmax; /**< Last value to process along the X dimension (N). */
unsigned int _k0; /**< First value to process along the K dimension. */
unsigned int _kmax; /**< Last value to process along the K dimension. */
unsigned int _multi; /**< Multi index. */
int _kern_k; /**< Number of elements along K actually processed by the kernel. */
int _bblocks; /**< Number of x_block processed by the kernel. */
};
/** Common interface for the templated wrappers around the matrix multiply NEON assembly implementations */
class NEGEMMInterleavedMatrixMultiplyWrapper
{
public:
/** Transform the block at the given coordinates
*
* @param[in] wl Workload to process.
* @param[in] info Information about the current thread.
* @param[in] batch_window Window containing iteration information for the M and batch dimensions.
* @param[in] start_offset Offset relative to the beginning of batch_window to start the processing from.
* @param[in] end_offset Offset relative to the beginning of batch_window to stop the processing.
*/
virtual void transform(const MatrixMultiplyWorkload &wl, const ThreadInfo &info, const Window &batch_window, const Coordinates &start_offset, const Coordinates &end_offset) = 0;
/** Generate an array of workloads
*
* @param[out] workloads Container to store the generated workloads.
*/
virtual void create_workloads(std::vector<MatrixMultiplyWorkload> &workloads) = 0;
/** Default destructor */
virtual ~NEGEMMInterleavedMatrixMultiplyWrapper() = default;
};
/** Equivalent to arm_gemm::GemmInterleaved's strategy::kernel() but using Compute Library types. */
template <typename strategy>
class NEGEMMInterleavedMatrixMultiplyWrapperTemplate : public NEGEMMInterleavedMatrixMultiplyWrapper
{
public:
/** Configure the matrix multiplication: C = alpha * A * B + beta * C
*
* @param[in] prepared_a Already reshaped matrix A.
* @param[in] transformed_b Already reshaped matrix B.
* @param[out] tmp_c Temporary buffer to be used to store intermediate results.
* @param[in,out] c Result matrix C.
* @param[in] block_walker Window containing iteration information for the M and batch dimensions.
* @param[in] block_sizes Block sizes to use for the matrix multiplication (A & B must have been reshaped using these same block sizes).
* @param[in] params M, N, K sizes.
* @param[in] gemm_info GEMM meta-data
* @param[in] alpha Alpha value
* @param[in] beta Beta value
* @param[in] max_num_threads Maximum number of threads that might be used for the calculations.
*/
void configure(const ITensor *prepared_a, const ITensor *transformed_b, ITensor *tmp_c, ITensor *c, const Window &block_walker, const BlockSizes &block_sizes,
const INEGEMMWrapperKernel::Params &params, const GEMMInfo &gemm_info, float alpha, float beta, unsigned int max_num_threads)
{
_prepared_a = prepared_a;
_transformed_b = transformed_b;
_tmp_c = tmp_c;
_c = c;
_block_walker = block_walker;
_block_sizes = block_sizes;
_params = params;
_b_is_pretransposed = gemm_info.pretranpose_B();
_reinterpret_c_as_3d = gemm_info.depth_output_gemm3d() != 0;
_alpha = alpha;
_beta = beta;
auto_init_if_empty(*_tmp_c->info(), c->info()->clone()->set_tensor_shape(TensorShape{ _block_sizes.x_block * strategy::out_height(), max_num_threads }));
}
// Inherited methods overridden:
void transform(const MatrixMultiplyWorkload &wl, const ThreadInfo &info, const Window &batch_window, const Coordinates &start_offset, const Coordinates &end_offset) override
{
strategy strat(info.cpu_info);
TensorAccessor<typename strategy::operand_type> prepared_a(*_prepared_a);
TensorAccessor<typename strategy::operand_type> transformed_b(*_transformed_b);
TensorAccessor<typename strategy::result_type> c(*_c);
TensorAccessor<typename strategy::result_type> tmp_c(*_tmp_c);
// Handle 3d output re-interpretation
if(_reinterpret_c_as_3d)
{
Strides c_strides_as_3d = _c->info()->strides_in_bytes();
c_strides_as_3d.remove(Window::DimZ);
c.set_strides(c_strides_as_3d);
}
int prev_batch = -1;
typename strategy::operand_type *a_ptr = nullptr;
auto window_iterator = arm_compute::create_window_iterator(batch_window, start_offset, end_offset, [&](const Coordinates & id)
{
const unsigned int y = id.x();
const unsigned int batch = id.y();
const unsigned int ymax = std::min(_params.M, y + strategy::out_height());
// If it's the first block of a new batch then reset the pointer to A.
if(prev_batch != static_cast<int>(batch))
{
const unsigned int first_m = id.x();
a_ptr = prepared_a(0, first_m, batch);
prev_batch = batch;
}
// Call matrix multiply assembly routine to process the block:
strat.kernel(a_ptr, transformed_b(wl._offset_transformed_b), tmp_c(0, info.thread_id), 1, wl._bblocks, wl._kern_k);
a_ptr += strategy::out_height() * wl._kern_k;
// Merge the result with the other blocks' results:
strat.transforms.Merge(c(0, 0, batch, wl._multi), tmp_c(0, info.thread_id), c.stride(1), y, ymax, wl._x0, wl._xmax, _alpha, (wl._k0 == 0 ? _beta : static_cast<typename strategy::result_type>(1)));
});
auto on_new_row_size = [&](unsigned int start, unsigned int end)
{
//Nothing to do
};
window_iterator.iterate_2D(on_new_row_size);
}
void create_workloads(std::vector<MatrixMultiplyWorkload> &workloads) override
{
unsigned int offset_transformed_b = 0;
unsigned int wl_index = 0;
unsigned int num_buffers = 0, reshaped_block_size = 0;
if(!_b_is_pretransposed)
{
num_buffers = _transformed_b->info()->tensor_shape()[1];
reshaped_block_size = _transformed_b->info()->tensor_shape()[0];
}
execute_window_loop(_block_walker, [&](const Coordinates & id)
{
const unsigned int x0 = id.x();
const unsigned int k0 = id.y();
const unsigned int multi = id.z();
const unsigned int xmax = std::min(x0 + _block_walker.x().step(), _params.N);
const unsigned int kmax = std::min(k0 + _block_walker.y().step(), _params.K);
// Figure out how many "K" the kernel will actually process.
const int kern_k = ceil_to_multiple(kmax - k0, strategy::k_unroll());
const int bblocks = DIV_CEIL(xmax - x0, strategy::out_width());
workloads.push_back(MatrixMultiplyWorkload(offset_transformed_b, x0, xmax, k0, kmax, multi, kern_k, bblocks));
if(_b_is_pretransposed)
{
offset_transformed_b += bblocks * strategy::out_width() * kern_k;
}
else
{
// Rotate through the BufferManager's buffers:
wl_index++;
offset_transformed_b = (wl_index % num_buffers) * reshaped_block_size;
}
});
}
private:
const ITensor *_prepared_a
{
nullptr
};
const ITensor *_transformed_b{ nullptr };
ITensor *_tmp_c{ nullptr };
ITensor *_c{ nullptr };
unsigned int _Nsize{ 0 };
unsigned int _Ksize{ 0 };
bool _transpose_b{ false };
BlockSizes _block_sizes{};
INEGEMMWrapperKernel::Params _params{};
Window _block_walker{};
bool _b_is_pretransposed{ false };
bool _reinterpret_c_as_3d{ false };
typename strategy::result_type _alpha{};
typename strategy::result_type _beta{};
};
} // namespace arm_compute
#endif /* __ARM_COMPUTE_NEGEMMINTERLEAVEDMATRIXMULTIPLYWRAPPER_H__ */