blob: 87b1fdf64c0d3075d23d5fc3e286a9333399373b [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_HELPERS_H__
#define __ARM_COMPUTE_HELPERS_H__
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/Steps.h"
#include "arm_compute/core/Strides.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Window.h"
#include <array>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
namespace arm_compute
{
class IKernel;
class ITensor;
class ITensorInfo;
/** Disable bitwise operations by default */
template <typename T>
struct enable_bitwise_ops
{
static constexpr bool value = false; /**< Disabled */
};
#ifndef DOXYGEN_SKIP_THIS
template <typename T>
typename std::enable_if<enable_bitwise_ops<T>::value, T>::type operator&(T lhs, T rhs)
{
using underlying_type = typename std::underlying_type<T>::type;
return static_cast<T>(static_cast<underlying_type>(lhs) & static_cast<underlying_type>(rhs));
}
#endif /* DOXYGEN_SKIP_THIS */
/** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object
* It also calls the kernel's configuration.
*
* @param[in] args All the arguments that need pass to kernel's configuration.
*
* @return A unique pointer pointed to a CL/GLES kernel object
*/
template <typename Kernel, typename... T>
std::unique_ptr<Kernel> create_configure_kernel(T &&... args)
{
std::unique_ptr<Kernel> k = arm_compute::support::cpp14::make_unique<Kernel>();
k->configure(std::forward<T>(args)...);
return k;
}
/** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object
*
* @return A unique pointer pointed to a Kernel kernel object
*/
template <typename Kernel>
std::unique_ptr<Kernel> create_kernel()
{
std::unique_ptr<Kernel> k = arm_compute::support::cpp14::make_unique<Kernel>();
return k;
}
namespace traits
{
/** Check if a type T is contained in a tuple Tuple of types */
template <typename T, typename Tuple>
struct is_contained;
template <typename T>
struct is_contained<T, std::tuple<>> : std::false_type
{
};
template <typename T, typename... Ts>
struct is_contained<T, std::tuple<T, Ts...>> : std::true_type
{
};
template <typename T, typename U, typename... Ts>
struct is_contained<T, std::tuple<U, Ts...>> : is_contained<T, std::tuple<Ts...>>
{
};
}
/** Computes bilinear interpolation using the pointer to the top-left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
*
* @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
* @param[in] stride Stride to access the bottom-left and bottom-right pixel values
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
template <typename T>
inline T delta_bilinear_c1(const T *pixel_ptr, size_t stride, float dx, float dy)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const T a00 = *pixel_ptr;
const T a01 = *(pixel_ptr + 1);
const T a10 = *(pixel_ptr + stride);
const T a11 = *(pixel_ptr + stride + 1);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
return static_cast<T>(a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4);
}
/** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be quantized and in single channel format.
*
* @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
* @param[in] stride Stride to access the bottom-left and bottom-right pixel values
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
* @param[in] iq_info Input QuantizationInfo
* @param[in] oq_info Output QuantizationInfo
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info);
const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info);
const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info);
const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
return static_cast<uint8_t>(quantize_qasymm8(res, oq_info));
}
/** Computes linear interpolation using the pointer to the top pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
*
* @param[in] pixel_ptr Pointer to the top pixel value of a single channel input.
* @param[in] stride Stride to access the bottom pixel value
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
*
* @note dy must be in the range [0, 1.0]
*
* @return The linear interpolated pixel value
*/
template <typename T>
inline T delta_linear_c1_y(const T *pixel_ptr, size_t stride, float dy)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dy1 = 1.0f - dy;
const T a00 = *pixel_ptr;
const T a10 = *(pixel_ptr + stride);
const float w1 = dy1;
const float w3 = dy;
return static_cast<T>(a00 * w1 + a10 * w3);
}
/** Computes linear interpolation using the pointer to the left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
*
* @param[in] pixel_ptr Pointer to the left pixel value of a single channel input.
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
*
* @note dx must be in the range [0, 1.0]
*
* @return The linear interpolated pixel value
*/
template <typename T>
inline T delta_linear_c1_x(const T *pixel_ptr, float dx)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const T a00 = *pixel_ptr;
const T a01 = *(pixel_ptr + 1);
const float dx1 = 1.0f - dx;
const float w1 = dx1;
const float w2 = dx;
return static_cast<T>(a00 * w1 + a01 * w2);
}
/** Return the pixel at (x,y) using bilinear interpolation.
*
* @warning Only works if the iterator was created with an IImage
*
* @param[in] first_pixel_ptr Pointer to the first pixel of a single channel input.
* @param[in] stride Stride in bytes of the image;
* @param[in] x X position of the wanted pixel
* @param[in] y Y position of the wanted pixel
*
* @return The pixel at (x, y) using bilinear interpolation.
*/
template <typename T>
inline T pixel_bilinear_c1(const T *first_pixel_ptr, size_t stride, float x, float y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
const int32_t xi = std::floor(x);
const int32_t yi = std::floor(y);
const float dx = x - xi;
const float dy = y - yi;
return delta_bilinear_c1(first_pixel_ptr + xi + yi * stride, stride, dx, dy);
}
/** Return the pixel at (x,y) using bilinear interpolation by clamping when out of borders. The image must be single channel input
*
* @warning Only works if the iterator was created with an IImage
*
* @param[in] first_pixel_ptr Pointer to the first pixel of a single channel image.
* @param[in] stride Stride in bytes of the image
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] x X position of the wanted pixel
* @param[in] y Y position of the wanted pixel
*
* @return The pixel at (x, y) using bilinear interpolation.
*/
template <typename T>
inline uint8_t pixel_bilinear_c1_clamp(const T *first_pixel_ptr, size_t stride, size_t width, size_t height, float x, float y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
x = std::max(-1.f, std::min(x, static_cast<float>(width)));
y = std::max(-1.f, std::min(y, static_cast<float>(height)));
const float xi = std::floor(x);
const float yi = std::floor(y);
const float dx = x - xi;
const float dy = y - yi;
if(dx == 0.0f)
{
if(dy == 0.0f)
{
return static_cast<T>(first_pixel_ptr[static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride]);
}
return delta_linear_c1_y(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride, dy);
}
if(dy == 0.0f)
{
return delta_linear_c1_x(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, dx);
}
return delta_bilinear_c1(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride, dx, dy);
}
/** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8
*
* @note The interpolation area depends on the width and height ration of the input and output images
* @note Currently average of the contributing pixels is calculated
*
* @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image.
* @param[in] stride Stride in bytes of the image
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] wr Width ratio among the input image width and output image width.
* @param[in] hr Height ratio among the input image height and output image height.
* @param[in] x X position of the wanted pixel
* @param[in] y Y position of the wanted pixel
*
* @return The pixel at (x, y) using area interpolation.
*/
inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y);
/** Iterator updated by @ref execute_window_loop for each window element */
class Iterator
{
public:
/** Default constructor to create an empty iterator */
constexpr Iterator();
/** Create a container iterator for the metadata and allocation contained in the ITensor
*
* @param[in] tensor The tensor to associate to the iterator.
* @param[in] window The window which will be used to iterate over the tensor.
*/
Iterator(const ITensor *tensor, const Window &window);
/** Increment the iterator along the specified dimension of the step value associated to the dimension.
*
* @warning It is the caller's responsibility to call increment(dimension+1) when reaching the end of a dimension, the iterator will not check for overflow.
*
* @note When incrementing a dimension 'n' the coordinates of all the dimensions in the range (0,n-1) are reset. For example if you iterate over a 2D image, everytime you change row (dimension 1), the iterator for the width (dimension 0) is reset to its start.
*
* @param[in] dimension Dimension to increment
*/
void increment(size_t dimension);
/** Return the offset in bytes from the first element to the current position of the iterator
*
* @return The current position of the iterator in bytes relative to the first element.
*/
constexpr int offset() const;
/** Return a pointer to the current pixel.
*
* @warning Only works if the iterator was created with an ITensor.
*
* @return equivalent to buffer() + offset()
*/
constexpr uint8_t *ptr() const;
/** Move the iterator back to the beginning of the specified dimension.
*
* @param[in] dimension Dimension to reset
*/
void reset(size_t dimension);
private:
uint8_t *_ptr;
class Dimension
{
public:
constexpr Dimension()
: _dim_start(0), _stride(0)
{
}
int _dim_start;
int _stride;
};
std::array<Dimension, Coordinates::num_max_dimensions> _dims;
};
/** Iterate through the passed window, automatically adjusting the iterators and calling the lambda_functino for each element.
* It passes the x and y positions to the lambda_function for each iteration
*
* @param[in] w Window to iterate through.
* @param[in] lambda_function The function of type void(function)( const Coordinates & id ) to call at each iteration.
* Where id represents the absolute coordinates of the item to process.
* @param[in,out] iterators Tensor iterators which will be updated by this function before calling lambda_function.
*/
template <typename L, typename... Ts>
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators);
/** Update window and padding size for each of the access patterns.
*
* First the window size is reduced based on all access patterns that are not
* allowed to modify the padding of the underlying tensor. Then the padding of
* the remaining tensors is increased to match the window.
*
* @param[in] win Window that is used by the kernel.
* @param[in] patterns Access patterns used to calculate the final window and padding.
*
* @return True if the window has been changed. Changes to the padding do not
* influence the returned value.
*/
template <typename... Ts>
bool update_window_and_padding(Window &win, Ts &&... patterns)
{
bool window_changed = false;
utility::for_each([&](const IAccessWindow & w)
{
window_changed |= w.update_window_if_needed(win);
},
patterns...);
bool padding_changed = false;
utility::for_each([&](IAccessWindow & w)
{
padding_changed |= w.update_padding_if_needed(win);
},
patterns...);
return window_changed;
}
/** Calculate the maximum window for a given tensor shape and border setting
*
* @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size.
*
* @return The maximum window the kernel can be executed on.
*/
Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize());
/** Calculate the maximum window for a given tensor shape and border setting
*
* @param[in] info Tensor info object defining the shape of the object for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size.
*
* @return The maximum window the kernel can be executed on.
*/
inline Window calculate_max_window(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize())
{
return calculate_max_window(info.valid_region(), steps, skip_border, border_size);
}
/** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting
*
* @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size. The border region will be excluded from the window.
*
* @return The maximum window the kernel can be executed on.
*/
Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize());
/** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting
*
* @param[in] info Tensor info object defining the shape of the object for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] skip_border (Optional) If true exclude the border region from the window.
* @param[in] border_size (Optional) Border size.
*
* @return The maximum window the kernel can be executed on.
*/
inline Window calculate_max_window_horizontal(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize())
{
return calculate_max_window_horizontal(info.valid_region(), steps, skip_border, border_size);
}
/** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border.
*
* @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] border_size (Optional) Border size. The border region will be included in the window.
*
* @return The maximum window the kernel can be executed on.
*/
Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps = Steps(), BorderSize border_size = BorderSize());
/** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border.
*
* @param[in] info Tensor info object defining the shape of the object for which the window is created.
* @param[in] steps (Optional) Number of elements processed for each step.
* @param[in] border_size (Optional) Border size. The border region will be included in the window.
*
* @return The maximum window the kernel can be executed on.
*/
inline Window calculate_max_enlarged_window(const ITensorInfo &info, const Steps &steps = Steps(), BorderSize border_size = BorderSize())
{
return calculate_max_enlarged_window(info.valid_region(), steps, border_size);
}
/** Intersect multiple valid regions.
*
* @param[in] regions Valid regions.
*
* @return Intersection of all regions.
*/
template <typename... Ts>
ValidRegion intersect_valid_regions(const Ts &... regions)
{
auto intersect = [](const ValidRegion & r1, const ValidRegion & r2) -> ValidRegion
{
ValidRegion region;
for(size_t d = 0; d < std::min(r1.anchor.num_dimensions(), r2.anchor.num_dimensions()); ++d)
{
region.anchor.set(d, std::max(r1.anchor[d], r2.anchor[d]));
}
for(size_t d = 0; d < std::min(r1.shape.num_dimensions(), r2.shape.num_dimensions()); ++d)
{
region.shape.set(d, std::min(r1.shape[d], r2.shape[d]));
}
return region;
};
return utility::foldl(intersect, regions...);
}
/** Create a strides object based on the provided strides and the tensor dimensions.
*
* @param[in] info Tensor info object providing the shape of the tensor for unspecified strides.
* @param[in] stride_x Stride to be used in X dimension (in bytes).
* @param[in] fixed_strides Strides to be used in higher dimensions starting at Y (in bytes).
*
* @return Strides object based on the specified strides. Missing strides are
* calculated based on the tensor shape and the strides of lower dimensions.
*/
template <typename T, typename... Ts>
inline Strides compute_strides(const ITensorInfo &info, T stride_x, Ts &&... fixed_strides)
{
const TensorShape &shape = info.tensor_shape();
// Create strides object
Strides strides(stride_x, fixed_strides...);
for(size_t i = 1 + sizeof...(Ts); i < info.num_dimensions(); ++i)
{
strides.set(i, shape[i - 1] * strides[i - 1]);
}
return strides;
}
/** Create a strides object based on the tensor dimensions.
*
* @param[in] info Tensor info object used to compute the strides.
*
* @return Strides object based on element size and tensor shape.
*/
template <typename... Ts>
inline Strides compute_strides(const ITensorInfo &info)
{
return compute_strides(info, info.element_size());
}
/** Permutes given Dimensions according to a permutation vector
*
* @warning Validity of permutation is not checked
*
* @param[in, out] dimensions Dimensions to permute
* @param[in] perm Permutation vector
*/
template <typename T>
inline void permute(Dimensions<T> &dimensions, const PermutationVector &perm)
{
auto dimensions_copy = utility::make_array<Dimensions<T>::num_max_dimensions>(dimensions.begin(), dimensions.end());
for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
T dimension_val = (perm[i] < dimensions.num_dimensions()) ? dimensions_copy[perm[i]] : 0;
dimensions.set(i, dimension_val);
}
}
/** Permutes given TensorShape according to a permutation vector
*
* @warning Validity of permutation is not checked
*
* @param[in, out] shape Shape to permute
* @param[in] perm Permutation vector
*/
inline void permute(TensorShape &shape, const PermutationVector &perm)
{
TensorShape shape_copy = shape;
for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
size_t dimension_val = (perm[i] < shape.num_dimensions()) ? shape_copy[perm[i]] : 1;
shape.set(i, dimension_val, false); // Avoid changes in _num_dimension
}
}
/** Auto initialize the tensor info (shape, number of channels and data type) if the current assignment is empty.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] shape New shape.
* @param[in] num_channels New number of channels.
* @param[in] data_type New data type
* @param[in] quantization_info (Optional) New quantization info
*
* @return True if the tensor info has been initialized
*/
bool auto_init_if_empty(ITensorInfo &info,
const TensorShape &shape,
int num_channels, DataType data_type,
QuantizationInfo quantization_info = QuantizationInfo());
/** Auto initialize the tensor info using another tensor info.
*
* @param info_sink Tensor info used to check and assign
* @param info_source Tensor info used to assign
*
* @return True if the tensor info has been initialized
*/
bool auto_init_if_empty(ITensorInfo &info_sink, const ITensorInfo &info_source);
/** Set the shape to the specified value if the current assignment is empty.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] shape New shape.
*
* @return True if the shape has been changed.
*/
bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape);
/** Set the format, data type and number of channels to the specified value if
* the current data type is unknown.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] format New format.
*
* @return True if the format has been changed.
*/
bool set_format_if_unknown(ITensorInfo &info, Format format);
/** Set the data type and number of channels to the specified value if
* the current data type is unknown.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] data_type New data type.
*
* @return True if the data type has been changed.
*/
bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type);
/** Set the data layout to the specified value if
* the current data layout is unknown.
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] data_layout New data layout.
*
* @return True if the data type has been changed.
*/
bool set_data_layout_if_unknown(ITensorInfo &info, DataLayout data_layout);
/** Set the quantization info to the specified value if
* the current quantization info is empty and the data type of asymmetric quantized type
*
* @param[in,out] info Tensor info used to check and assign.
* @param[in] quantization_info Quantization info
*
* @return True if the quantization info has been changed.
*/
bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantization_info);
/** Helper function to calculate the Valid Region for Scale.
*
* @param[in] src_info Input tensor info used to check.
* @param[in] dst_shape Shape of the output.
* @param[in] interpolate_policy Interpolation policy.
* @param[in] sampling_policy Sampling policy.
* @param[in] border_undefined True if the border is undefined.
*
* @return The corresponding valid region
*/
ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape,
InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined);
/** Convert a linear index into n-dimensional coordinates.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] index Linear index specifying the i-th element.
*
* @return n-dimensional coordinates.
*/
inline Coordinates index2coords(const TensorShape &shape, int index);
/** Convert n-dimensional coordinates into a linear index.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] coord N-dimensional coordinates.
*
* @return linead index
*/
inline int coords2index(const TensorShape &shape, const Coordinates &coord);
/** Get the index of the given dimension.
*
* @param[in] data_layout The data layout.
* @param[in] data_layout_dimension The dimension which this index is requested for.
*
* @return The int conversion of the requested data layout index.
*/
inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension);
/** Get the DataLayoutDimension of a given index and layout.
*
* @param[in] data_layout The data layout.
* @param[in] index The data layout index.
*
* @return The dimension which this index is requested for.
*/
inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index);
/** Calculate the normalization dimension index for a given normalization type
*
* @param[in] layout Data layout of the input and output tensor
* @param[in] info Normalization info
*
* @return Normalization dimension index
*/
inline unsigned int get_normalization_dimension_index(DataLayout layout, const NormalizationLayerInfo &info)
{
const unsigned int width_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::WIDTH);
const unsigned int channel_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::CHANNEL);
return info.is_in_map() ? width_idx : channel_idx;
}
/** Calculate the number of output tiles required by Winograd Convolution layer. This utility function can be used by the Winograd input transform
* to know the number of tiles on the x and y direction
*
* @param[in] in_dims Spatial dimensions of the input tensor of convolution layer
* @param[in] kernel_size Kernel size
* @param[in] output_tile_size Size of a single output tile
* @param[in] conv_info Convolution info (i.e. pad, stride,...)
*
* @return the number of output tiles along the x and y directions of size "output_tile_size"
*/
inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims, const Size2D &kernel_size, const Size2D &output_tile_size, const PadStrideInfo &conv_info)
{
int num_tiles_x = std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>(output_tile_size.width));
int num_tiles_y = std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>(output_tile_size.height));
// Clamp in case we provide paddings but we have 1D convolution
num_tiles_x = std::min(num_tiles_x, static_cast<int>(in_dims.width));
num_tiles_y = std::min(num_tiles_y, static_cast<int>(in_dims.height));
return Size2D(num_tiles_x, num_tiles_y);
}
/** Wrap-around a number within the range 0 <= x < m
*
* @param[in] x Input value
* @param[in] m Range
*
* @return the wrapped-around number
*/
template <typename T>
inline T wrap_around(T x, T m)
{
return x >= 0 ? x % m : (x % m + m) % m;
}
/** Given an integer value, this function returns the next power of two
*
* @param[in] x Input value
*
* @return the next power of two
*/
inline unsigned int get_next_power_two(unsigned int x)
{
// Decrement by 1
x--;
// Shift right by 1
x |= x >> 1u;
// Shift right by 2
x |= x >> 2u;
// Shift right by 4
x |= x >> 4u;
// Shift right by 8
x |= x >> 8u;
// Shift right by 16
x |= x >> 16u;
// Increment by 1
x++;
return x;
}
} // namespace arm_compute
#include "arm_compute/core/Helpers.inl"
#endif /*__ARM_COMPUTE_HELPERS_H__ */