blob: bcfc0f7994abfef18e9250825de05b33c7a5d918 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#endif /* ARM_COMPUTE_CL */
#include "arm_compute/core/Error.h"
#include "arm_compute/core/PixelValue.h"
#include "libnpy/npy.hpp"
#include <algorithm>
#include <iomanip>
#include <ostream>
#include <random>
using namespace arm_compute::graph_utils;
PPMWriter::PPMWriter(std::string name, unsigned int maximum)
: _name(std::move(name)), _iterator(0), _maximum(maximum)
{
}
bool PPMWriter::access_tensor(ITensor &tensor)
{
std::stringstream ss;
ss << _name << _iterator << ".ppm";
arm_compute::utils::save_to_ppm(tensor, ss.str());
_iterator++;
if(_maximum == 0)
{
return true;
}
return _iterator < _maximum;
}
DummyAccessor::DummyAccessor(unsigned int maximum)
: _iterator(0), _maximum(maximum)
{
}
bool DummyAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_UNUSED(tensor);
bool ret = _maximum == 0 || _iterator < _maximum;
if(_iterator == _maximum)
{
_iterator = 0;
}
else
{
_iterator++;
}
return ret;
}
PPMAccessor::PPMAccessor(const std::string &ppm_path, bool bgr, float mean_r, float mean_g, float mean_b)
: _ppm_path(ppm_path), _bgr(bgr), _mean_r(mean_r), _mean_g(mean_g), _mean_b(mean_b)
{
}
bool PPMAccessor::access_tensor(ITensor &tensor)
{
utils::PPMLoader ppm;
const float mean[3] =
{
_bgr ? _mean_b : _mean_r,
_mean_g,
_bgr ? _mean_r : _mean_b
};
// Open PPM file
ppm.open(_ppm_path);
// Fill the tensor with the PPM content (BGR)
ppm.fill_planar_tensor(tensor, _bgr);
// Subtract the mean value from each channel
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
execute_window_loop(window, [&](const Coordinates & id)
{
const float value = *reinterpret_cast<float *>(tensor.ptr_to_element(id)) - mean[id.z()];
*reinterpret_cast<float *>(tensor.ptr_to_element(id)) = value;
});
return true;
}
TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream)
: _labels(), _output_stream(output_stream), _top_n(top_n)
{
_labels.clear();
std::ifstream ifs;
try
{
ifs.exceptions(std::ifstream::badbit);
ifs.open(labels_path, std::ios::in | std::ios::binary);
for(std::string line; !std::getline(ifs, line).fail();)
{
_labels.emplace_back(line);
}
}
catch(const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR("Accessing %s: %s", labels_path.c_str(), e.what());
}
}
bool TopNPredictionsAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0));
// Get the predicted class
std::vector<float> classes_prob;
std::vector<size_t> index;
const auto output_net = reinterpret_cast<float *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
const size_t num_classes = tensor.info()->dimension(0);
classes_prob.resize(num_classes);
index.resize(num_classes);
std::copy(output_net, output_net + num_classes, classes_prob.begin());
// Sort results
std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
std::sort(std::begin(index), std::end(index),
[&](size_t a, size_t b)
{
return classes_prob[a] > classes_prob[b];
});
_output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl
<< std::endl;
for(size_t i = 0; i < _top_n; ++i)
{
_output_stream << std::fixed << std::setprecision(4)
<< classes_prob[index.at(i)]
<< " - [id = " << index.at(i) << "]"
<< ", " << _labels[index.at(i)] << std::endl;
}
return false;
}
RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed)
: _lower(lower), _upper(upper), _seed(seed)
{
}
template <typename T, typename D>
void RandomAccessor::fill(ITensor &tensor, D &&distribution)
{
std::mt19937 gen(_seed);
if(tensor.info()->padding().empty())
{
for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size())
{
const T value = distribution(gen);
*reinterpret_cast<T *>(tensor.buffer() + offset) = value;
}
}
else
{
// If tensor has padding accessing tensor elements through execution window.
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
execute_window_loop(window, [&](const Coordinates & id)
{
const T value = distribution(gen);
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value;
});
}
}
bool RandomAccessor::access_tensor(ITensor &tensor)
{
switch(tensor.info()->data_type())
{
case DataType::U8:
{
std::uniform_int_distribution<uint8_t> distribution_u8(_lower.get<uint8_t>(), _upper.get<uint8_t>());
fill<uint8_t>(tensor, distribution_u8);
break;
}
case DataType::S8:
case DataType::QS8:
{
std::uniform_int_distribution<int8_t> distribution_s8(_lower.get<int8_t>(), _upper.get<int8_t>());
fill<int8_t>(tensor, distribution_s8);
break;
}
case DataType::U16:
{
std::uniform_int_distribution<uint16_t> distribution_u16(_lower.get<uint16_t>(), _upper.get<uint16_t>());
fill<uint16_t>(tensor, distribution_u16);
break;
}
case DataType::S16:
case DataType::QS16:
{
std::uniform_int_distribution<int16_t> distribution_s16(_lower.get<int16_t>(), _upper.get<int16_t>());
fill<int16_t>(tensor, distribution_s16);
break;
}
case DataType::U32:
{
std::uniform_int_distribution<uint32_t> distribution_u32(_lower.get<uint32_t>(), _upper.get<uint32_t>());
fill<uint32_t>(tensor, distribution_u32);
break;
}
case DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution_s32(_lower.get<int32_t>(), _upper.get<int32_t>());
fill<int32_t>(tensor, distribution_s32);
break;
}
case DataType::U64:
{
std::uniform_int_distribution<uint64_t> distribution_u64(_lower.get<uint64_t>(), _upper.get<uint64_t>());
fill<uint64_t>(tensor, distribution_u64);
break;
}
case DataType::S64:
{
std::uniform_int_distribution<int64_t> distribution_s64(_lower.get<int64_t>(), _upper.get<int64_t>());
fill<int64_t>(tensor, distribution_s64);
break;
}
case DataType::F16:
{
std::uniform_real_distribution<float> distribution_f16(_lower.get<float>(), _upper.get<float>());
fill<float>(tensor, distribution_f16);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution_f32(_lower.get<float>(), _upper.get<float>());
fill<float>(tensor, distribution_f32);
break;
}
case DataType::F64:
{
std::uniform_real_distribution<double> distribution_f64(_lower.get<double>(), _upper.get<double>());
fill<double>(tensor, distribution_f64);
break;
}
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
return true;
}
NumPyBinLoader::NumPyBinLoader(std::string filename)
: _filename(std::move(filename))
{
}
bool NumPyBinLoader::access_tensor(ITensor &tensor)
{
const TensorShape tensor_shape = tensor.info()->tensor_shape();
std::vector<unsigned long> shape;
// Open file
std::ifstream stream(_filename, std::ios::in | std::ios::binary);
ARM_COMPUTE_ERROR_ON_MSG(!stream.good(), "Failed to load binary data");
// Check magic bytes and version number
unsigned char v_major = 0;
unsigned char v_minor = 0;
npy::read_magic(stream, &v_major, &v_minor);
// Read header
std::string header;
if(v_major == 1 && v_minor == 0)
{
header = npy::read_header_1_0(stream);
}
else if(v_major == 2 && v_minor == 0)
{
header = npy::read_header_2_0(stream);
}
else
{
ARM_COMPUTE_ERROR("Unsupported file format version");
}
// Parse header
bool fortran_order = false;
std::string typestr;
npy::ParseHeader(header, typestr, &fortran_order, shape);
// Check if the typestring matches the given one
std::string expect_typestr = arm_compute::utils::get_typestring(tensor.info()->data_type());
ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch");
// Validate tensor shape
ARM_COMPUTE_ERROR_ON_MSG(shape.size() != tensor_shape.num_dimensions(), "Tensor ranks mismatch");
if(fortran_order)
{
for(size_t i = 0; i < shape.size(); ++i)
{
ARM_COMPUTE_ERROR_ON_MSG(tensor_shape[i] != shape[i], "Tensor dimensions mismatch");
}
}
else
{
for(size_t i = 0; i < shape.size(); ++i)
{
ARM_COMPUTE_ERROR_ON_MSG(tensor_shape[i] != shape[shape.size() - i - 1], "Tensor dimensions mismatch");
}
}
// Read data
if(tensor.info()->padding().empty())
{
// If tensor has no padding read directly from stream.
stream.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size());
}
else
{
// If tensor has padding accessing tensor elements through execution window.
Window window;
window.use_tensor_dimensions(tensor_shape);
execute_window_loop(window, [&](const Coordinates & id)
{
stream.read(reinterpret_cast<char *>(tensor.ptr_to_element(id)), tensor.info()->element_size());
});
}
return true;
}