blob: 434291b58e6b3a8cc909a6d009cdc759b11d3df5 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
#define ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/CPP/ConvolutionLayer.h"
#include "tests/validation/CPP/Utils.h"
#include "tests/validation/Helpers.h"
#include <random>
namespace arm_compute
{
class NEConvolutionLayer;
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationFixedPointFixture : public framework::Fixture
{
public:
template <typename...>
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, bool reshape_weights, DataType data_type, int fractional_bits)
{
_fractional_bits = fractional_bits;
_data_type = data_type;
_target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, data_type, fractional_bits);
_reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, fractional_bits);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::F16:
case DataType::F32:
{
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
bool reshape_weights, DataType data_type, int fixed_point_position)
{
WeightsInfo weights_info(!reshape_weights, weights_shape.x(), weights_shape.y(), weights_shape[3]);
TensorShape reshaped_weights_shape(weights_shape);
if(!reshape_weights)
{
// Check if its a "fully connected" convolution
const bool is_fully_connected_convolution = (output_shape.x() == 1 && output_shape.y() == 1);
const bool is_optimised = std::is_same<FunctionType, NEConvolutionLayer>::value && NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV7 && data_type == DataType::F32;
reshaped_weights_shape.collapse(3);
if(bias_shape.total_size() > 0)
{
reshaped_weights_shape.set(0, reshaped_weights_shape.x() + 1);
}
if(is_fully_connected_convolution || is_optimised)
{
const size_t shape_x = reshaped_weights_shape.x();
reshaped_weights_shape.set(0, reshaped_weights_shape.y());
reshaped_weights_shape.set(1, shape_x);
}
else
{
const int interleave_width = 16 / data_size_from_type(data_type);
reshaped_weights_shape.set(0, reshaped_weights_shape.x() * interleave_width);
reshaped_weights_shape.set(1, static_cast<unsigned int>(std::ceil(reshaped_weights_shape.y() / static_cast<float>(interleave_width))));
}
}
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, fixed_point_position);
TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, data_type, 1, fixed_point_position);
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1, fixed_point_position);
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, fixed_point_position);
// Create and configure function
FunctionType conv;
conv.configure(&src, &weights, &bias, &dst, info, weights_info);
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Allocate tensors
src.allocator()->allocate();
weights.allocator()->allocate();
bias.allocator()->allocate();
dst.allocator()->allocate();
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Fill tensors
fill(AccessorType(src), 0);
if(!reshape_weights)
{
const bool is_fully_connected_convolution = (output_shape.x() == 1 && output_shape.y() == 1);
const bool is_optimised = std::is_same<FunctionType, NEConvolutionLayer>::value && NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV7 && data_type == DataType::F32;
TensorShape tmp_weights_shape(weights_shape);
SimpleTensor<T> tmp_weights(tmp_weights_shape, data_type, 1, fixed_point_position);
SimpleTensor<T> tmp_bias(bias_shape, data_type, 1, fixed_point_position);
// Fill with original shape
fill(tmp_weights, 1);
fill(tmp_bias, 2);
tmp_weights = linearise_weights(tmp_weights, &tmp_bias);
if(!is_fully_connected_convolution && !is_optimised)
{
// Transpose with interleave
const int interleave_size = 16 / tmp_weights.element_size();
tmp_weights = transpose(std::move(tmp_weights), interleave_size);
}
AccessorType weights_accessor(weights);
for(int i = 0; i < tmp_weights.num_elements(); ++i)
{
Coordinates coord = index2coord(tmp_weights.shape(), i);
std::copy_n(static_cast<const T *>(tmp_weights(coord)), 1, static_cast<T *>(weights_accessor(coord)));
}
}
else
{
fill(AccessorType(weights), 1);
fill(AccessorType(bias), 2);
}
// Compute NEConvolutionLayer function
conv.run();
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
DataType data_type, int fixed_point_position)
{
// Create reference
SimpleTensor<T> src{ input_shape, data_type, 1, fixed_point_position };
SimpleTensor<T> weights{ weights_shape, data_type, 1, fixed_point_position };
SimpleTensor<T> bias{ bias_shape, data_type, 1, fixed_point_position };
// Fill reference
fill(src, 0);
fill(weights, 1);
fill(bias, 2);
return reference::convolution_layer<T>(src, weights, bias, output_shape, info);
}
TensorType _target{};
SimpleTensor<T> _reference{};
int _fractional_bits{};
DataType _data_type{};
private:
template <typename U>
SimpleTensor<U> linearise_weights(const SimpleTensor<U> &weights, const SimpleTensor<U> *biases = nullptr)
{
TensorShape dst_shape(weights.shape());
dst_shape.collapse(3);
if(biases != nullptr)
{
dst_shape.set(0, dst_shape.x() + 1);
}
const size_t shape_x = dst_shape.x();
dst_shape.set(0, dst_shape.y());
dst_shape.set(1, shape_x);
SimpleTensor<U> dst(dst_shape, weights.data_type());
// Don't iterate over biases yet
for(int weights_idx = 0; weights_idx < weights.num_elements(); ++weights_idx)
{
Coordinates weights_coord = index2coord(weights.shape(), weights_idx);
const int dst_row = weights_idx % weights.shape().total_size_lower(3);
Coordinates dst_coord{ weights_coord[3], dst_row, weights_coord[4] };
const int dst_idx = coord2index(dst.shape(), dst_coord);
dst[dst_idx] = weights[weights_idx];
}
if(biases != nullptr)
{
// Fill last row with biases
for(int bias_idx = 0; bias_idx < biases->num_elements(); ++bias_idx)
{
Coordinates bias_coord = index2coord(biases->shape(), bias_idx);
Coordinates dst_coord{ bias_coord.x(), static_cast<int>(dst.shape().y()) - 1, bias_coord.y() };
int dst_idx = coord2index(dst.shape(), dst_coord);
dst[dst_idx] = (*biases)[bias_idx];
}
}
return dst;
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ConvolutionValidationFixture : public ConvolutionValidationFixedPointFixture<TensorType, AccessorType, FunctionType, T>
{
public:
template <typename...>
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, bool reshape_weights, DataType data_type)
{
ConvolutionValidationFixedPointFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, data_type, 0);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE */