blob: 62f4e5d057b0c18585a5ea2ac7d75c449743d145 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEWarpKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <cstddef>
using namespace arm_compute;
namespace
{
inline uint8_t nearest_interpolation(const uint8_t *in_ptr, int x, int y, size_t stride)
{
return in_ptr[x + y * stride];
}
} // namespace
INEWarpKernel::INEWarpKernel()
: _func(nullptr), _input(nullptr), _output(nullptr), _constant_border_value(0), _matrix(nullptr)
{
}
BorderSize INEWarpKernel::border_size() const
{
return BorderSize(1);
}
void INEWarpKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(this->*_func)(window);
}
void INEWarpKernel::configure(const ITensor *input, ITensor *output, const float *matrix, BorderMode border_mode, uint8_t constant_border_value)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON(nullptr == matrix);
_matrix = matrix;
_constant_border_value = constant_border_value;
switch(border_mode)
{
case BorderMode::UNDEFINED:
_func = &INEWarpKernel::warp_undefined;
break;
case BorderMode::CONSTANT:
_func = &INEWarpKernel::warp_constant;
break;
case BorderMode::REPLICATE:
_func = &INEWarpKernel::warp_replicate;
break;
default:
ARM_COMPUTE_ERROR("Border mode not supported");
break;
}
_input = input;
_output = output;
// Configure kernel window
Window win = calculate_max_window(*output->info(), Steps(1U));
const ValidRegion &input_valid_region = input->info()->valid_region();
// Reads can occur within the valid region of the input
AccessWindowStatic input_access(input->info(),
input_valid_region.anchor[0] - border_size().left, input_valid_region.anchor[1] - border_size().top,
input_valid_region.anchor[0] + input_valid_region.shape[0] + border_size().right,
input_valid_region.anchor[1] + input_valid_region.shape[1] + border_size().bottom);
AccessWindowHorizontal output_access(output->info(), 0, 1);
update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));
INEKernel::configure(win);
}
template <InterpolationPolicy interpolation>
void NEWarpAffineKernel<interpolation>::warp_undefined(const Window &window)
{
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator in(_input, win_in);
Iterator out(_output, window);
const int min_x = _input->info()->valid_region().anchor[0];
const int max_x = min_x + _input->info()->valid_region().shape[0];
const int min_y = _input->info()->valid_region().anchor[1];
const int max_y = min_y + _input->info()->valid_region().shape[1];
const size_t stride = _input->info()->strides_in_bytes()[1];
// x0 = M01 * x + M01 * y + M02
// y0 = M11 * x + M11 * y + M12
const float M00 = _matrix[0];
const float M10 = _matrix[1];
const float M01 = _matrix[0 + 1 * 2];
const float M11 = _matrix[1 + 1 * 2];
const float M02 = _matrix[0 + 2 * 2];
const float M12 = _matrix[1 + 2 * 2];
// "M00 * x" and "M10 * x", when x = window.x.start
const float start_x0 = M00 * window.x().start();
const float start_y0 = M10 * window.x().start();
// Current row
int y_cur = window.y().start();
// const_x0 and const_y0 are the constant parts of x0 and y0 during the row processing
float const_x0 = M01 * y_cur + M02;
float const_y0 = M11 * y_cur + M12;
// Affine warp coordinates
float x0 = start_x0 + const_x0;
float y0 = start_y0 + const_y0;
execute_window_loop(window, [&](const Coordinates & id)
{
// Check if we are processing a new row. If so, update the current row (y_cur), x0 and y0
if(y_cur != id.y())
{
y_cur = id.y();
const_x0 = M01 * y_cur + M02;
const_y0 = M11 * y_cur + M12;
x0 = start_x0 + const_x0;
y0 = start_y0 + const_y0;
}
// Only write to output if x0 and y0 are within the valid region.
// Otherwise the read value would be undefined.
if((min_y <= y0) && (y0 < max_y) && (min_x <= x0) && (x0 < max_x))
{
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = nearest_interpolation(in.ptr(), x0, y0, stride);
break;
case InterpolationPolicy::BILINEAR:
*out.ptr() = pixel_bilinear_c1(in.ptr(), stride, x0, y0);
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
x0 += M00;
y0 += M10;
},
in, out);
}
template <InterpolationPolicy interpolation>
void NEWarpAffineKernel<interpolation>::warp_constant(const Window &window)
{
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator in(_input, win_in);
Iterator out(_output, window);
const int min_x = _input->info()->valid_region().anchor[0];
const int max_x = min_x + _input->info()->valid_region().shape[0];
const int min_y = _input->info()->valid_region().anchor[1];
const int max_y = min_y + _input->info()->valid_region().shape[1];
const size_t stride = _input->info()->strides_in_bytes()[1];
// x0 = M01 * x + M01 * y + M02
// y0 = M11 * x + M11 * y + M12
const float M00 = _matrix[0];
const float M10 = _matrix[1];
const float M01 = _matrix[0 + 1 * 2];
const float M11 = _matrix[1 + 1 * 2];
const float M02 = _matrix[0 + 2 * 2];
const float M12 = _matrix[1 + 2 * 2];
// "M00 * x" and "M10 * x", when x = window.x.start
const float start_x0 = M00 * window.x().start();
const float start_y0 = M10 * window.x().start();
// Current row
int y_cur = window.y().start();
// const_x0 and const_y0 are the constant parts of x0 and y0 during the row processing
float const_x0 = M01 * y_cur + M02;
float const_y0 = M11 * y_cur + M12;
// Affine warp coordinates
float x0 = start_x0 + const_x0;
float y0 = start_y0 + const_y0;
execute_window_loop(window, [&](const Coordinates & id)
{
// Check if we are processing a new row. If so, update the current row (y_cur), x0 and y0
if(y_cur != id.y())
{
y_cur = id.y();
const_x0 = M01 * y_cur + M02;
const_y0 = M11 * y_cur + M12;
x0 = start_x0 + const_x0;
y0 = start_y0 + const_y0;
}
// Only use input values if x0 and y0 are within the valid region.
// Otherwise write the constant border value.
if((min_y <= y0) && (y0 < max_y) && (min_x <= x0) && (x0 < max_x))
{
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = nearest_interpolation(in.ptr(), x0, y0, stride);
break;
case InterpolationPolicy::BILINEAR:
*out.ptr() = pixel_bilinear_c1(in.ptr(), stride, x0, y0);
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
else
{
*out.ptr() = _constant_border_value;
}
x0 += M00;
y0 += M10;
},
in, out);
}
template <InterpolationPolicy interpolation>
void NEWarpAffineKernel<interpolation>::warp_replicate(const Window &window)
{
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator in(_input, win_in);
Iterator out(_output, window);
const int min_x = _input->info()->valid_region().anchor[0];
const int max_x = min_x + _input->info()->valid_region().shape[0];
const int min_y = _input->info()->valid_region().anchor[1];
const int max_y = min_y + _input->info()->valid_region().shape[1];
const size_t stride = _input->info()->strides_in_bytes()[1];
// Current row
int y_cur = window.y().start();
const float M00 = _matrix[0];
const float M10 = _matrix[1];
const float M01 = _matrix[0 + 1 * 2];
const float M11 = _matrix[1 + 1 * 2];
const float M02 = _matrix[0 + 2 * 2];
const float M12 = _matrix[1 + 2 * 2];
// "M00 * x" and "M10 * x", when x = window.x.start
const float start_x0 = M00 * window.x().start();
const float start_y0 = M10 * window.x().start();
// const_x0 and const_y0 are the constant parts of x0 and y0 during the row processing
float const_x0 = M01 * y_cur + M02;
float const_y0 = M11 * y_cur + M12;
float x0 = start_x0 + const_x0;
float y0 = start_y0 + const_y0;
execute_window_loop(window, [&](const Coordinates & id)
{
// Check if we are processing a new row. If so, update the current row (y_cur), x0 and y0
if(y_cur != id.y())
{
y_cur = id.y();
const_x0 = M01 * y_cur + M02;
const_y0 = M11 * y_cur + M12;
x0 = start_x0 + const_x0;
y0 = start_y0 + const_y0;
}
// Only load from (x0, y0) if the point is within the valid region.
// Otherwise load from the edge of the valid region.
if((min_y <= y0) && (y0 < max_y) && (min_x <= x0) && (x0 < max_x))
{
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = nearest_interpolation(in.ptr(), x0, y0, stride);
break;
case InterpolationPolicy::BILINEAR:
*out.ptr() = pixel_bilinear_c1(in.ptr(), stride, x0, y0);
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
else
{
// Clamp coordinates
const auto xi = clamp<int>(x0, min_x, max_x - 1);
const auto yi = clamp<int>(y0, min_y, max_y - 1);
*out.ptr() = *(in.ptr() + xi + yi * stride);
}
x0 += M00;
y0 += M10;
},
in, out);
}
template <InterpolationPolicy interpolation>
void NEWarpPerspectiveKernel<interpolation>::warp_undefined(const Window &window)
{
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator in(_input, win_in);
Iterator out(_output, window);
const int min_x = _input->info()->valid_region().anchor[0];
const int max_x = min_x + _input->info()->valid_region().shape[0];
const int min_y = _input->info()->valid_region().anchor[1];
const int max_y = min_y + _input->info()->valid_region().shape[1];
const size_t stride = _input->info()->strides_in_bytes()[1];
// x0 = M00 * x + M01 * y + M02
// y0 = M10 * x + M11 * y + M12
// z0 = M20 * x + M21 * y + M22
// xn = x0 / z0
// yn = y0 / z0
const float M00 = _matrix[0];
const float M10 = _matrix[1];
const float M20 = _matrix[2];
const float M01 = _matrix[0 + 1 * 3];
const float M11 = _matrix[1 + 1 * 3];
const float M21 = _matrix[2 + 1 * 3];
const float M02 = _matrix[0 + 2 * 3];
const float M12 = _matrix[1 + 2 * 3];
const float M22 = _matrix[2 + 2 * 3];
// "M00 * x", "M10 * x" and "M20 * x", when x = window.x.start
const float start_x0 = M00 * window.x().start();
const float start_y0 = M10 * window.x().start();
const float start_z0 = M20 * window.x().start();
// Current row
int y_cur = window.y().start();
int z_cur = window.z().start();
int d3_cur = window[3].start();
int d4_cur = window[4].start();
int d5_cur = window[5].start();
// const_x0, const_y0 and const_z0 are the constant parts of x0, y0 and z0 during the row processing
float const_x0 = M01 * y_cur + M02;
float const_y0 = M11 * y_cur + M12;
float const_z0 = M21 * y_cur + M22;
// Perspective warp coordinates
float x0 = start_x0 + const_x0;
float y0 = start_y0 + const_y0;
float z0 = start_z0 + const_z0;
execute_window_loop(window, [&](const Coordinates & id)
{
// Check if we are processing a new row. If so, update the current processed row (y_cur), x0, y0 and z0
if((y_cur != id.y()) || (z_cur != id.z()) || (d3_cur != id[3]) || (d4_cur != id[4]) || (d5_cur != id[5]))
{
y_cur = id.y();
z_cur = id.z();
d3_cur = id[3];
d4_cur = id[4];
d5_cur = id[5];
const_x0 = M01 * y_cur + M02;
const_y0 = M11 * y_cur + M12;
const_z0 = M21 * y_cur + M22;
x0 = start_x0 + const_x0;
y0 = start_y0 + const_y0;
z0 = start_z0 + const_z0;
}
const float xn = x0 / z0;
const float yn = y0 / z0;
// Only write to output if xn and yn are within the valid region.
// Otherwise the read value would be undefined.
if((min_y <= yn) && (yn < max_y) && (min_x <= xn) && (xn < max_x))
{
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = nearest_interpolation(in.ptr(), xn, yn, stride);
break;
case InterpolationPolicy::BILINEAR:
*out.ptr() = pixel_bilinear_c1(in.ptr(), stride, xn, yn);
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
x0 += M00;
y0 += M10;
z0 += M20;
},
in, out);
}
template <InterpolationPolicy interpolation>
void NEWarpPerspectiveKernel<interpolation>::warp_constant(const Window &window)
{
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator in(_input, win_in);
Iterator out(_output, window);
const int min_x = _input->info()->valid_region().anchor[0];
const int max_x = min_x + _input->info()->valid_region().shape[0];
const int min_y = _input->info()->valid_region().anchor[1];
const int max_y = min_y + _input->info()->valid_region().shape[1];
const size_t stride = _input->info()->strides_in_bytes()[1];
// x0 = M00 * x + M01 * y + M02
// y0 = M10 * x + M11 * y + M12
// z0 = M20 * x + M21 * y + M22
// xn = x0 / z0
// yn = y0 / z0
const float M00 = _matrix[0];
const float M10 = _matrix[1];
const float M20 = _matrix[2];
const float M01 = _matrix[0 + 1 * 3];
const float M11 = _matrix[1 + 1 * 3];
const float M21 = _matrix[2 + 1 * 3];
const float M02 = _matrix[0 + 2 * 3];
const float M12 = _matrix[1 + 2 * 3];
const float M22 = _matrix[2 + 2 * 3];
// "M00 * x", "M10 * x" and "M20 * x", when x = window.x.start
const float start_x0 = M00 * window.x().start();
const float start_y0 = M10 * window.x().start();
const float start_z0 = M20 * window.x().start();
// Current row
int y_cur = window.y().start();
int z_cur = window.z().start();
int d3_cur = window[3].start();
int d4_cur = window[4].start();
int d5_cur = window[5].start();
// const_x0, const_y0 and const_z0 are the constant parts of x0, y0 and z0 during the row processing
float const_x0 = M01 * y_cur + M02;
float const_y0 = M11 * y_cur + M12;
float const_z0 = M21 * y_cur + M22;
// Perspective warp coordinates
float x0 = start_x0 + const_x0;
float y0 = start_y0 + const_y0;
float z0 = start_z0 + const_z0;
execute_window_loop(window, [&](const Coordinates & id)
{
// Check if we are processing a new row. If so, update the current processed row (y_cur), x0, y0 and z0
if((y_cur != id.y()) || (z_cur != id.z()) || (d3_cur != id[3]) || (d4_cur != id[4]) || (d5_cur != id[5]))
{
y_cur = id.y();
z_cur = id.z();
d3_cur = id[3];
d4_cur = id[4];
d5_cur = id[5];
const_x0 = M01 * y_cur + M02;
const_y0 = M11 * y_cur + M12;
const_z0 = M21 * y_cur + M22;
x0 = start_x0 + const_x0;
y0 = start_y0 + const_y0;
z0 = start_z0 + const_z0;
}
const float xn = x0 / z0;
const float yn = y0 / z0;
// Only use input values if xn and yn are within the valid region.
if((min_y <= yn) && (yn < max_y) && (min_x <= xn) && (xn < max_x))
{
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = nearest_interpolation(in.ptr(), xn, yn, stride);
break;
case InterpolationPolicy::BILINEAR:
*out.ptr() = pixel_bilinear_c1(in.ptr(), stride, xn, yn);
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
else
{
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = _constant_border_value;
break;
case InterpolationPolicy::BILINEAR:
{
const auto xi = clamp<int>(std::floor(xn), min_x - 1, max_x);
const auto yi = clamp<int>(std::floor(yn), min_y - 1, max_y);
const auto xi_1 = clamp<int>(std::floor(xn + 1), min_x - 1, max_x);
const auto yi_1 = clamp<int>(std::floor(yn + 1), min_y - 1, max_y);
const float dx = xn - std::floor(xn);
const float dy = yn - std::floor(yn);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = *(in.ptr() + xi + yi * stride);
const float a01 = *(in.ptr() + xi_1 + yi * stride);
const float a10 = *(in.ptr() + xi + yi_1 * stride);
const float a11 = *(in.ptr() + xi_1 + yi_1 * stride);
*out.ptr() = a00 * (dx1 * dy1) + a01 * (dx * dy1) + a10 * (dx1 * dy) + a11 * (dx * dy);
}
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
x0 += M00;
y0 += M10;
z0 += M20;
},
in, out);
}
template <InterpolationPolicy interpolation>
void NEWarpPerspectiveKernel<interpolation>::warp_replicate(const Window &window)
{
// Don't increment in X and Y direction for the input tensor
// A pointer to the start of this plane is needed as base for the precomputed offsets
Window win_in(window);
win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
Iterator in(_input, win_in);
Iterator out(_output, window);
const int min_x = _input->info()->valid_region().anchor[0];
const int max_x = min_x + _input->info()->valid_region().shape[0];
const int min_y = _input->info()->valid_region().anchor[1];
const int max_y = min_y + _input->info()->valid_region().shape[1];
const size_t stride = _input->info()->strides_in_bytes()[1];
// Current row
int y_cur = window.y().start();
int z_cur = window.z().start();
int d3_cur = window[3].start();
int d4_cur = window[4].start();
int d5_cur = window[5].start();
// x0 = M00 * x + M01 * y + M02
// y0 = M10 * x + M11 * y + M12
// z0 = M20 * x + M21 * y + M22
// xn = x0 / z0
// yn = y0 / z0
const float M00 = _matrix[0];
const float M10 = _matrix[1];
const float M20 = _matrix[2];
const float M01 = _matrix[0 + 1 * 3];
const float M11 = _matrix[1 + 1 * 3];
const float M21 = _matrix[2 + 1 * 3];
const float M02 = _matrix[0 + 2 * 3];
const float M12 = _matrix[1 + 2 * 3];
const float M22 = _matrix[2 + 2 * 3];
// "M00 * x", "M10 * x" and "M20 * x", when x = window.x.start
const float start_x0 = M00 * window.x().start();
const float start_y0 = M10 * window.x().start();
const float start_z0 = M20 * window.x().start();
// const_x0, const_y0 and const_z0 are the constant parts of x0, y0 and z0 during the row processing
float const_x0 = M01 * y_cur + M02;
float const_y0 = M11 * y_cur + M12;
float const_z0 = M21 * y_cur + M22;
// Perspective warp coordinates
float x0 = start_x0 + const_x0;
float y0 = start_y0 + const_y0;
float z0 = start_z0 + const_z0;
execute_window_loop(window, [&](const Coordinates & id)
{
// Check if we are processing a new row. If so, update the current processed row (y_cur), x0, y0 and z0
if((y_cur != id.y()) || (z_cur != id.z()) || (d3_cur != id[3]) || (d4_cur != id[4]) || (d5_cur != id[5]))
{
y_cur = id.y();
z_cur = id.z();
d3_cur = id[3];
d4_cur = id[4];
d5_cur = id[5];
const_x0 = M01 * y_cur + M02;
const_y0 = M11 * y_cur + M12;
const_z0 = M21 * y_cur + M22;
x0 = start_x0 + const_x0;
y0 = start_y0 + const_y0;
z0 = start_z0 + const_z0;
}
const float xn = x0 / z0;
const float yn = y0 / z0;
// Only load from (x0, y0) if the point is within the valid region.
if((min_y <= yn) && (yn < max_y) && (min_x <= xn) && (xn < max_x))
{
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = nearest_interpolation(in.ptr(), xn, yn, stride);
break;
case InterpolationPolicy::BILINEAR:
*out.ptr() = pixel_bilinear_c1(in.ptr(), stride, xn, yn);
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
else
{
// Clamp coordinates
const auto xi = clamp<int>(std::floor(xn), min_x, max_x - 1);
const auto yi = clamp<int>(std::floor(yn), min_y, max_y - 1);
switch(interpolation)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
*out.ptr() = *(in.ptr() + xi + yi * stride);
break;
case InterpolationPolicy::BILINEAR:
{
const auto xi_1 = clamp<int>(std::floor(xn + 1), min_x, max_x - 1);
const auto yi_1 = clamp<int>(std::floor(yn + 1), min_y, max_y - 1);
const float dx = xn - std::floor(xn);
const float dy = yn - std::floor(yn);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = *(in.ptr() + xi + yi * stride);
const float a01 = *(in.ptr() + xi_1 + yi * stride);
const float a10 = *(in.ptr() + xi + yi_1 * stride);
const float a11 = *(in.ptr() + xi_1 + yi_1 * stride);
*out.ptr() = a00 * (dx1 * dy1) + a01 * (dx * dy1) + a10 * (dx1 * dy) + a11 * (dx * dy);
}
break;
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
x0 += M00;
y0 += M10;
z0 += M20;
},
in, out);
}
template class arm_compute::NEWarpAffineKernel<InterpolationPolicy::NEAREST_NEIGHBOR>;
template class arm_compute::NEWarpAffineKernel<InterpolationPolicy::BILINEAR>;
template class arm_compute::NEWarpPerspectiveKernel<InterpolationPolicy::NEAREST_NEIGHBOR>;
template class arm_compute::NEWarpPerspectiveKernel<InterpolationPolicy::BILINEAR>;