blob: b7dfb592528ea0bb46b2ea84ebad8919e9a11086 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NENonMaximaSuppression3x3Kernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include <arm_neon.h>
#include <cstddef>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
#ifdef ARM_COMPUTE_ENABLE_FP16
namespace fp16
{
inline void mask_top(const float16x8_t &vc, const float16x8_t &in0, const float16x8_t &in1, uint16x8_t &mask)
{
// vc > nc.val[0], vc > nc.val[1], vc > nc.val[2]
mask = vandq_u16(mask, vcgeq_f16(vc, in0));
mask = vandq_u16(mask, vcgeq_f16(vc, vextq_f16(in0, in1, 1)));
mask = vandq_u16(mask, vcgeq_f16(vc, vextq_f16(in0, in1, 2)));
}
inline void mask_middle(const float16x8_t &vc, const float16x8_t &in0, const float16x8_t &in1, uint16x8_t &mask)
{
// vc >= nc.val[0], vc > nc.val[2]
mask = vandq_u16(mask, vcgeq_f16(vc, in0));
mask = vandq_u16(mask, vcgtq_f16(vc, vextq_f16(in0, in1, 2)));
}
inline void mask_bottom(const float16x8_t &vc, const float16x8_t &in0, const float16x8_t &in1, uint16x8_t &mask)
{
// vc > nc.val[0], vc > nc.val[1], vc > nc.val[2]
mask = vandq_u16(mask, vcgtq_f16(vc, in0));
mask = vandq_u16(mask, vcgtq_f16(vc, vextq_f16(in0, in1, 1)));
mask = vandq_u16(mask, vcgtq_f16(vc, vextq_f16(in0, in1, 2)));
}
inline void non_maxima_suppression3x3_F32_F32(const void *__restrict in_ptr, void *__restrict out_ptr, const uint32_t in_stride)
{
auto in = static_cast<const float *__restrict>(in_ptr) - 1;
const auto out = static_cast<float *__restrict>(out_ptr);
// Get centre scores
const float16x8x2_t vc =
{
vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 1)), vcvt_f16_f32(vld1q_f32(in + 5))),
vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 9)), vcvt_f16_f32(vld1q_f32(in + 13)))
};
// Neighboring pixels
in -= in_stride;
static const float16x4_t zero_f16x4 = vdup_n_f16(0);
static const uint16x8_t zero_u16 = vdupq_n_u16(0);
static const uint16x8_t true_mask = vceqq_u16(zero_u16, zero_u16);
static const uint16x8x2_t true_mask_x2 =
{
true_mask,
true_mask
};
uint16x8x2_t mask = true_mask_x2;
// Top row
const float16x8_t tmp_top0 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in)), vcvt_f16_f32(vld1q_f32(in + 4)));
const float16x8_t tmp_top1 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 8)), vcvt_f16_f32(vld1q_f32(in + 12)));
const float16x8_t tmp_top2 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 16)), zero_f16x4);
// vc >= nc.val[0], vc >= nc.val[1], vc >= nc.val[2]
mask_top(vc.val[0], tmp_top0, tmp_top1, mask.val[0]);
mask_top(vc.val[1], tmp_top1, tmp_top2, mask.val[1]);
in += in_stride;
// Middle row
const float16x8_t tmp_mid0 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in)), vcvt_f16_f32(vld1q_f32(in + 4)));
const float16x8_t tmp_mid1 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 8)), vcvt_f16_f32(vld1q_f32(in + 12)));
const float16x8_t tmp_mid2 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 16)), zero_f16x4);
// vc >= nc.val[0], vc > nc.val[2]
mask_middle(vc.val[0], tmp_mid0, tmp_mid1, mask.val[0]);
mask_middle(vc.val[1], tmp_mid1, tmp_mid2, mask.val[1]);
in += in_stride;
// Bottom row
const float16x8_t tmp_bot0 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in)), vcvt_f16_f32(vld1q_f32(in + 4)));
const float16x8_t tmp_bot1 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 8)), vcvt_f16_f32(vld1q_f32(in + 12)));
const float16x8_t tmp_bot2 = vcombine_f16(vcvt_f16_f32(vld1q_f32(in + 16)), zero_f16x4);
// vc > nc.val[0], vc > nc.val[1], vc > nc.val[2]
mask_bottom(vc.val[0], tmp_bot0, tmp_bot1, mask.val[0]);
mask_bottom(vc.val[1], tmp_bot1, tmp_bot2, mask.val[1]);
// Store
static const float16x8_t zero_f16x8 = vdupq_n_f16(0);
const float16x8_t suppressed0 = vbslq_f16(mask.val[0], vc.val[0], zero_f16x8);
vst1q_f32(out + 0, vcvt_f32_f16(vget_low_f16(suppressed0)));
vst1q_f32(out + 4, vcvt_f32_f16(vget_high_f16(suppressed0)));
const float16x8_t suppressed1 = vbslq_f16(mask.val[1], vc.val[1], zero_f16x8);
vst1q_f32(out + 8, vcvt_f32_f16(vget_low_f16(suppressed1)));
vst1q_f32(out + 12, vcvt_f32_f16(vget_high_f16(suppressed1)));
}
inline void non_maxima_suppression3x3_U8_U8(const void *__restrict in_ptr, void *__restrict out_ptr, const uint32_t in_stride)
{
auto in = static_cast<const uint8_t *__restrict>(in_ptr) - 1;
const auto out = static_cast<uint8_t *__restrict>(out_ptr);
// Get centre scores
const uint8x16_t vc = vld1q_u8(in + 1);
// Neighboring pixels
in -= in_stride;
// Top row
const uint8x16_t l_nc_0 = vld1q_u8(in);
const uint8x16_t m_nc_0 = vld1q_u8(in + 1);
const uint8x16_t r_nc_0 = vld1q_u8(in + 2);
// Keep center scores if ...
// vc >= l_nc_0, vc >= m_nc_0, vc >= r_nc_0
uint8x16_t mask = vcgeq_u8(vc, l_nc_0);
mask = vandq_u8(mask, vcgeq_u8(vc, m_nc_0));
mask = vandq_u8(mask, vcgeq_u8(vc, r_nc_0));
in += in_stride;
// Middle row
const uint8x16_t l_nc_1 = vld1q_u8(in);
const uint8x16_t r_nc_1 = vld1q_u8(in + 2);
// ... and ...
// vc >= l_nc_1, vc > r_nc_1
mask = vandq_u8(mask, vcgeq_u8(vc, l_nc_1));
mask = vandq_u8(mask, vcgtq_u8(vc, r_nc_1));
in += in_stride;
// Bottom row
const uint8x16_t l_nc_2 = vld1q_u8(in);
const uint8x16_t m_nc_2 = vld1q_u8(in + 1);
const uint8x16_t r_nc_2 = vld1q_u8(in + 2);
// ... and ...
// vc > l_nc_2, vc > m_nc_2, vc > r_nc_2
mask = vandq_u8(mask, vcgtq_u8(vc, l_nc_2));
mask = vandq_u8(mask, vcgtq_u8(vc, m_nc_2));
mask = vandq_u8(mask, vcgtq_u8(vc, r_nc_2));
// Store
static const uint8x16_t zero = vdupq_n_u8(0);
vst1q_u8(out, vbslq_u8(mask, vc, zero));
}
} // namespace fp16
void NENonMaximaSuppression3x3FP16Kernel::configure(const ITensor *input, ITensor *output, bool border_undefined)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
_input = input;
_output = output;
switch(input->info()->data_type())
{
case DataType::U8:
_func = &fp16::non_maxima_suppression3x3_U8_U8;
break;
default:
_func = &fp16::non_maxima_suppression3x3_F32_F32;
break;
}
constexpr unsigned int num_elems_processed_per_iteration = 16;
const unsigned int num_elems_read_per_iteration = 16 + 2 * border_size().left + (input->info()->data_type() == DataType::U8 ? 0 : 3);
constexpr unsigned int num_elems_written_per_iteration = 16;
constexpr unsigned int num_rows_read_per_iteration = 3;
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration), border_undefined, border_size());
AccessWindowHorizontal output_access(output->info(), 0, num_elems_written_per_iteration);
update_window_and_padding(win,
AccessWindowRectangle(input->info(), -border_size().left, -border_size().top, num_elems_read_per_iteration, num_rows_read_per_iteration),
output_access);
output_access.set_valid_region(win, input->info()->valid_region(), border_undefined, border_size());
INEKernel::configure(win);
}
#endif /* ARM_COMPUTE_ENABLE_FP16 */
namespace
{
inline void non_maxima_suppression3x3_FLOAT_FLOAT(const void *__restrict input_ptr, void *__restrict output_ptr, const uint32_t input_stride)
{
auto input = static_cast<const float *__restrict>(input_ptr) - 1;
const auto output = static_cast<float *__restrict>(output_ptr);
// Get centre scores
const float32x4x4_t vc =
{
{
vld1q_f32(input + 1),
vld1q_f32(input + 5),
vld1q_f32(input + 9),
vld1q_f32(input + 13)
}
};
// Neighboring pixels
float32x4x4_t l_nc{ {} };
float32x4x4_t m_nc{ {} };
float32x4x4_t r_nc{ {} };
input -= input_stride;
// Row0 - Low part
float32x4_t tmp_low = vld1q_f32(input);
float32x4_t tmp_high = vld1q_f32(input + 4);
float32x4_t tmp_high1 = vld1q_f32(input + 8);
l_nc.val[0] = tmp_low;
m_nc.val[0] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[0] = vextq_f32(tmp_low, tmp_high, 2);
tmp_low = tmp_high;
tmp_high = tmp_high1;
l_nc.val[1] = tmp_low;
m_nc.val[1] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[1] = vextq_f32(tmp_low, tmp_high, 2);
// Row0 - High part
tmp_low = tmp_high1;
tmp_high = vld1q_f32(input + 12);
tmp_high1 = vld1q_f32(input + 16);
l_nc.val[2] = tmp_low;
m_nc.val[2] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[2] = vextq_f32(tmp_low, tmp_high, 2);
tmp_low = tmp_high;
tmp_high = tmp_high1;
l_nc.val[3] = tmp_low;
m_nc.val[3] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[3] = vextq_f32(tmp_low, tmp_high, 2);
// mc >= nc.val[0], mc >= nc.val[1], mc >= nc.val[2]
uint32x4x4_t mask{ {} };
mask.val[0] = vcgeq_f32(vc.val[0], l_nc.val[0]);
mask.val[0] = vandq_u32(mask.val[0], vcgeq_f32(vc.val[0], m_nc.val[0]));
mask.val[0] = vandq_u32(mask.val[0], vcgeq_f32(vc.val[0], r_nc.val[0]));
mask.val[1] = vcgeq_f32(vc.val[1], l_nc.val[1]);
mask.val[1] = vandq_u32(mask.val[1], vcgeq_f32(vc.val[1], m_nc.val[1]));
mask.val[1] = vandq_u32(mask.val[1], vcgeq_f32(vc.val[1], r_nc.val[1]));
mask.val[2] = vcgeq_f32(vc.val[2], l_nc.val[2]);
mask.val[2] = vandq_u32(mask.val[2], vcgeq_f32(vc.val[2], m_nc.val[2]));
mask.val[2] = vandq_u32(mask.val[2], vcgeq_f32(vc.val[2], r_nc.val[2]));
mask.val[3] = vcgeq_f32(vc.val[3], l_nc.val[3]);
mask.val[3] = vandq_u32(mask.val[3], vcgeq_f32(vc.val[3], m_nc.val[3]));
mask.val[3] = vandq_u32(mask.val[3], vcgeq_f32(vc.val[3], r_nc.val[3]));
input += input_stride;
// Row1 - Low part
tmp_low = vld1q_f32(input);
tmp_high = vld1q_f32(input + 4);
tmp_high1 = vld1q_f32(input + 8);
l_nc.val[0] = tmp_low;
r_nc.val[0] = vextq_f32(tmp_low, tmp_high, 2);
tmp_low = tmp_high;
tmp_high = tmp_high1;
l_nc.val[1] = tmp_low;
r_nc.val[1] = vextq_f32(tmp_low, tmp_high, 2);
// Row1 - High part
tmp_low = tmp_high1;
tmp_high = vld1q_f32(input + 12);
tmp_high1 = vld1q_f32(input + 16);
l_nc.val[2] = tmp_low;
r_nc.val[2] = vextq_f32(tmp_low, tmp_high, 2);
tmp_low = tmp_high;
tmp_high = tmp_high1;
l_nc.val[3] = tmp_low;
r_nc.val[3] = vextq_f32(tmp_low, tmp_high, 2);
// mc >= nc.val[0], mc > nc.val[2]
mask.val[0] = vandq_u32(mask.val[0], vcgeq_f32(vc.val[0], l_nc.val[0]));
mask.val[0] = vandq_u32(mask.val[0], vcgtq_f32(vc.val[0], r_nc.val[0]));
mask.val[1] = vandq_u32(mask.val[1], vcgeq_f32(vc.val[1], l_nc.val[1]));
mask.val[1] = vandq_u32(mask.val[1], vcgtq_f32(vc.val[1], r_nc.val[1]));
mask.val[2] = vandq_u32(mask.val[2], vcgeq_f32(vc.val[2], l_nc.val[2]));
mask.val[2] = vandq_u32(mask.val[2], vcgtq_f32(vc.val[2], r_nc.val[2]));
mask.val[3] = vandq_u32(mask.val[3], vcgeq_f32(vc.val[3], l_nc.val[3]));
mask.val[3] = vandq_u32(mask.val[3], vcgtq_f32(vc.val[3], r_nc.val[3]));
input += input_stride;
// Row2 - Low part
tmp_low = vld1q_f32(input);
tmp_high = vld1q_f32(input + 4);
tmp_high1 = vld1q_f32(input + 8);
l_nc.val[0] = tmp_low;
m_nc.val[0] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[0] = vextq_f32(tmp_low, tmp_high, 2);
tmp_low = tmp_high;
tmp_high = tmp_high1;
l_nc.val[1] = tmp_low;
m_nc.val[1] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[1] = vextq_f32(tmp_low, tmp_high, 2);
// Row2 - High part
tmp_low = tmp_high1;
tmp_high = vld1q_f32(input + 12);
tmp_high1 = vld1q_f32(input + 16);
l_nc.val[2] = tmp_low;
m_nc.val[2] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[2] = vextq_f32(tmp_low, tmp_high, 2);
tmp_low = tmp_high;
tmp_high = tmp_high1;
l_nc.val[3] = tmp_low;
m_nc.val[3] = vextq_f32(tmp_low, tmp_high, 1);
r_nc.val[3] = vextq_f32(tmp_low, tmp_high, 2);
// mc > nc.val[0], mc > nc.val[1], mc > nc.val[2]
mask.val[0] = vandq_u32(mask.val[0], vcgtq_f32(vc.val[0], l_nc.val[0]));
mask.val[0] = vandq_u32(mask.val[0], vcgtq_f32(vc.val[0], m_nc.val[0]));
mask.val[0] = vandq_u32(mask.val[0], vcgtq_f32(vc.val[0], r_nc.val[0]));
mask.val[1] = vandq_u32(mask.val[1], vcgtq_f32(vc.val[1], l_nc.val[1]));
mask.val[1] = vandq_u32(mask.val[1], vcgtq_f32(vc.val[1], m_nc.val[1]));
mask.val[1] = vandq_u32(mask.val[1], vcgtq_f32(vc.val[1], r_nc.val[1]));
mask.val[2] = vandq_u32(mask.val[2], vcgtq_f32(vc.val[2], l_nc.val[2]));
mask.val[2] = vandq_u32(mask.val[2], vcgtq_f32(vc.val[2], m_nc.val[2]));
mask.val[2] = vandq_u32(mask.val[2], vcgtq_f32(vc.val[2], r_nc.val[2]));
mask.val[3] = vandq_u32(mask.val[3], vcgtq_f32(vc.val[3], l_nc.val[3]));
mask.val[3] = vandq_u32(mask.val[3], vcgtq_f32(vc.val[3], m_nc.val[3]));
mask.val[3] = vandq_u32(mask.val[3], vcgtq_f32(vc.val[3], r_nc.val[3]));
static const float32x4_t zero = vdupq_n_f32(0.f);
// Store
vst1q_f32(output + 0, vbslq_f32(mask.val[0], vc.val[0], zero));
vst1q_f32(output + 4, vbslq_f32(mask.val[1], vc.val[1], zero));
vst1q_f32(output + 8, vbslq_f32(mask.val[2], vc.val[2], zero));
vst1q_f32(output + 12, vbslq_f32(mask.val[3], vc.val[3], zero));
}
inline void non_maxima_suppression3x3_U8_U8(const void *__restrict input_ptr, void *__restrict output_ptr, const uint32_t input_stride)
{
auto input = static_cast<const uint8_t *__restrict>(input_ptr) - 1;
const auto output = static_cast<uint8_t *__restrict>(output_ptr);
// Get centre scores
const uint8x16_t vc = vld1q_u8(input + 1);
// Neighboring pixels
uint8x16_t l_nc{};
uint8x16_t m_nc{};
uint8x16_t r_nc{};
input -= input_stride;
// Row0
l_nc = vld1q_u8(input);
m_nc = vld1q_u8(input + 1);
r_nc = vld1q_u8(input + 2);
// mc >= l_nc, mc >= m_nc, mc >= r_nc
uint8x16_t mask = vcgeq_u8(vc, l_nc);
mask = vandq_u8(mask, vcgeq_u8(vc, m_nc));
mask = vandq_u8(mask, vcgeq_u8(vc, r_nc));
input += input_stride;
// Row1
l_nc = vld1q_u8(input);
r_nc = vld1q_u8(input + 2);
// mc >= l_nc, mc > r_nc
mask = vandq_u8(mask, vcgeq_u8(vc, l_nc));
mask = vandq_u8(mask, vcgtq_u8(vc, r_nc));
input += input_stride;
// Row2
l_nc = vld1q_u8(input);
m_nc = vld1q_u8(input + 1);
r_nc = vld1q_u8(input + 2);
// mc > l_nc, mc > m_nc, mc > r_nc
mask = vandq_u8(mask, vcgtq_u8(vc, l_nc));
mask = vandq_u8(mask, vcgtq_u8(vc, m_nc));
mask = vandq_u8(mask, vcgtq_u8(vc, r_nc));
static const uint8x16_t zero = vdupq_n_u8(0);
// Store
vst1q_u8(output, vbslq_u8(mask, vc, zero));
}
} // namespace
NENonMaximaSuppression3x3Kernel::NENonMaximaSuppression3x3Kernel()
: _func(nullptr), _input(nullptr), _output(nullptr)
{
}
BorderSize NENonMaximaSuppression3x3Kernel::border_size() const
{
return BorderSize(1);
}
void NENonMaximaSuppression3x3Kernel::configure(const ITensor *input, ITensor *output, bool border_undefined)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
_input = input;
_output = output;
if(input->info()->data_type() == DataType::U8)
{
_func = &non_maxima_suppression3x3_U8_U8;
}
else
{
_func = &non_maxima_suppression3x3_FLOAT_FLOAT;
}
constexpr unsigned int num_elems_processed_per_iteration = 16;
const unsigned int num_elems_read_per_iteration = 16 + 2 * border_size().left + (input->info()->data_type() == DataType::U8 ? 0 : 3);
constexpr unsigned int num_elems_written_per_iteration = 16;
constexpr unsigned int num_rows_read_per_iteration = 3;
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration), border_undefined, border_size());
AccessWindowHorizontal output_access(output->info(), 0, num_elems_written_per_iteration);
update_window_and_padding(win,
AccessWindowRectangle(input->info(), -border_size().left, -border_size().top, num_elems_read_per_iteration, num_rows_read_per_iteration),
output_access);
output_access.set_valid_region(win, input->info()->valid_region(), border_undefined, border_size());
INEKernel::configure(win);
}
void NENonMaximaSuppression3x3Kernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
Iterator input(_input, window);
Iterator output(_output, window);
const size_t input_stride = _input->info()->strides_in_bytes()[1] / element_size_from_data_type(_input->info()->data_type());
execute_window_loop(window, [&](const Coordinates & id)
{
_func(input.ptr(), output.ptr(), input_stride);
},
input, output);
}