blob: a81725fe84a1dd6ad0b25f60e93237696344e586 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEMinMaxLayerKernel.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <algorithm>
#include <arm_neon.h>
#include <climits>
#include <cstddef>
namespace arm_compute
{
NEMinMaxLayerKernel::NEMinMaxLayerKernel()
: _input(nullptr), _output(nullptr), _mtx()
{
}
void NEMinMaxLayerKernel::configure(const ITensor *input, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON(input->info()->num_dimensions() < 3);
ARM_COMPUTE_ERROR_ON(output == nullptr);
TensorShape output_shape{ input->info()->tensor_shape() };
output_shape.set(Window::DimX, 2);
output_shape.remove_dimension(1);
output_shape.remove_dimension(1);
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->fixed_point_position());
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);
_input = input;
_output = output;
// Configure kernel window
constexpr unsigned int num_elems_processed_per_iteration = 1;
Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input_access(input->info(), 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(output->info(), 0, 2);
update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));
INEKernel::configure(win);
}
void NEMinMaxLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
const int x_start = window.x().start();
const int x_end = window.x().end();
Window window_output;
window_output.use_tensor_dimensions(_output->info()->tensor_shape());
window_output.set(Window::DimX, Window::Dimension(0, 1, 1));
// Handle X dimension manually to split into two loops
// First one will use vector operations, second one processes the left over pixels
Window window_input(window);
window_input.set(Window::DimX, Window::Dimension(0, 1, 1));
window_input.collapse_if_possible(INEKernel::window(), 3);
window_input.set(3, Window::Dimension(0, 1, 1));
Iterator input(_input, window_input);
Iterator output(_output, window_output);
execute_window_loop(window_output, [&](const Coordinates & id_batch)
{
float32x2_t carry_min = vdup_n_f32(std::numeric_limits<float>::max());
float32x2_t carry_max = vdup_n_f32(std::numeric_limits<float>::lowest());
float carry_min_scalar = std::numeric_limits<float>::max();
float carry_max_scalar = std::numeric_limits<float>::lowest();
execute_window_loop(window_input, [&](const Coordinates & id)
{
int x = x_start;
const auto in_ptr = reinterpret_cast<const float *const>(input.ptr() + id_batch[1] * _input->info()->strides_in_bytes()[3]);
// Vector loop
for(; x <= x_end - 8; x += 8)
{
const float32x4x2_t pixels = vld2q_f32(in_ptr + x);
const float32x4_t tmp_min1 = vminq_f32(pixels.val[0], pixels.val[1]);
const float32x4_t tmp_max1 = vmaxq_f32(pixels.val[0], pixels.val[1]);
const float32x2_t tmp_min2 = vmin_f32(vget_high_f32(tmp_min1), vget_low_f32(tmp_min1));
const float32x2_t tmp_max2 = vmax_f32(vget_high_f32(tmp_max1), vget_low_f32(tmp_max1));
carry_min = vmin_f32(tmp_min2, carry_min);
carry_max = vmax_f32(tmp_max2, carry_max);
}
// Process leftover pixels
for(; x < x_end; ++x)
{
const float pixel = in_ptr[x];
carry_min_scalar = std::min(pixel, carry_min_scalar);
carry_max_scalar = std::max(pixel, carry_max_scalar);
}
},
input);
// Reduce result
carry_min = vpmin_f32(carry_min, carry_min);
carry_max = vpmax_f32(carry_max, carry_max);
carry_min = vpmin_f32(carry_min, carry_min);
carry_max = vpmax_f32(carry_max, carry_max);
// Extract max/min values
const float min_i = std::min(vget_lane_f32(carry_min, 0), carry_min_scalar);
const float max_i = std::max(vget_lane_f32(carry_max, 0), carry_max_scalar);
auto out_ptr = reinterpret_cast<float *const>(output.ptr());
// Perform reduction of local min/max values
update_min_max(out_ptr, min_i, max_i);
},
output);
}
void NEMinMaxLayerKernel::reset()
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
float32x2_t reset_values = vdup_n_f32(0.0f);
reset_values = vset_lane_f32(std::numeric_limits<float>::max(), reset_values, 0);
reset_values = vset_lane_f32(std::numeric_limits<float>::min(), reset_values, 1);
Window window_output;
window_output.use_tensor_dimensions(_output->info()->tensor_shape());
window_output.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator output(_output, window_output);
execute_window_loop(window_output, [&](const Coordinates & id)
{
vst1_f32(reinterpret_cast<float *const>(output.ptr()), reset_values);
},
output);
}
void NEMinMaxLayerKernel::update_min_max(float *out_ptr, float min, float max)
{
std::lock_guard<Mutex> lock(_mtx);
const float32x2_t old_min = vld1_dup_f32(out_ptr);
const float32x2_t old_max = vld1_dup_f32(out_ptr + 1);
const float32x2_t new_min = vmin_f32(vdup_n_f32(min), old_min);
const float32x2_t new_max = vmax_f32(vdup_n_f32(max), old_max);
vst1_f32(out_ptr, vzip_f32(new_min, new_max).val[0]);
}
} // namespace arm_compute