blob: d6cb1b644492c86797777a1ecd602fb033fda667 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGaussianPyramidKernel.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/INEKernel.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
#include <tuple>
using namespace arm_compute;
NEGaussianPyramidHorKernel::NEGaussianPyramidHorKernel()
: _border_size(0), _l2_load_offset(0)
{
}
BorderSize NEGaussianPyramidHorKernel::border_size() const
{
return _border_size;
}
void NEGaussianPyramidHorKernel::configure(const ITensor *input, ITensor *output, bool border_undefined)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S16);
ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != 2 * output->info()->dimension(0));
ARM_COMPUTE_ERROR_ON(input->info()->dimension(1) != output->info()->dimension(1));
for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_ERROR_ON(input->info()->dimension(i) != output->info()->dimension(i));
}
_input = input;
_output = output;
_border_size = BorderSize(border_undefined ? 0 : 2, 2);
// Configure kernel window
constexpr unsigned int num_elems_processed_per_iteration = 16;
constexpr unsigned int num_elems_read_per_iteration = 32;
constexpr unsigned int num_elems_written_per_iteration = 8;
constexpr float scale_x = 0.5f;
Window win = calculate_max_window_horizontal(*input->info(), Steps(num_elems_processed_per_iteration), border_undefined, border_size());
AccessWindowHorizontal output_access(output->info(), 0, num_elems_written_per_iteration, scale_x);
// Sub sampling selects odd pixels (1, 3, 5, ...) for images with even
// width and even pixels (0, 2, 4, ...) for images with odd width. (Whether
// a pixel is even or odd is determined based on the tensor shape not the
// valid region!)
// Thus the offset from which the first pixel (L2) for the convolution is
// loaded depends on the anchor and shape of the valid region.
// In the case of an even shape (= even image width) we need to load L2
// from -2 if the anchor is odd and from -1 if the anchor is even. That
// makes sure that L2 is always loaded from an odd pixel.
// On the other hand, for an odd shape (= odd image width) we need to load
// L2 from -1 if the anchor is odd and from -2 if the anchor is even to
// achieve the opposite effect.
// The condition can be simplified to checking whether anchor + shape is
// odd (-2) or even (-1) as only adding an odd and an even number will have
// an odd result.
_l2_load_offset = -border_size().left;
if((_input->info()->valid_region().anchor[0] + _input->info()->valid_region().shape[0]) % 2 == 0)
{
_l2_load_offset += 1;
}
update_window_and_padding(win,
AccessWindowHorizontal(input->info(), _l2_load_offset, num_elems_read_per_iteration),
output_access);
ValidRegion valid_region = input->info()->valid_region();
valid_region.anchor.set(0, std::ceil((valid_region.anchor[0] + (border_undefined ? border_size().left : 0)) / 2.f));
valid_region.shape.set(0, (valid_region.shape[0] - (border_undefined ? border_size().right : 0)) / 2 - valid_region.anchor[0]);
output_access.set_valid_region(win, valid_region);
INEKernel::configure(win);
}
void NEGaussianPyramidHorKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(window.x().step() % 2);
static const int16x8_t six = vdupq_n_s16(6);
static const int16x8_t four = vdupq_n_s16(4);
Window win_in(window);
win_in.shift(Window::DimX, _l2_load_offset);
Iterator in(_input, win_in);
// The output is half the width of the input
Window win_out(window);
win_out.scale(Window::DimX, 0.5f);
Iterator out(_output, win_out);
execute_window_loop(window, [&](const Coordinates & id)
{
const uint8x16x2_t data_2q = vld2q_u8(in.ptr());
const uint8x16_t &data_even = data_2q.val[0];
const uint8x16_t &data_odd = data_2q.val[1];
const int16x8_t data_l2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(data_even)));
const int16x8_t data_l1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(data_odd)));
const int16x8_t data_m = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(vextq_u8(data_even, data_even, 1))));
const int16x8_t data_r1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(vextq_u8(data_odd, data_odd, 1))));
const int16x8_t data_r2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(vextq_u8(data_even, data_even, 2))));
int16x8_t out_val = vaddq_s16(data_l2, data_r2);
out_val = vmlaq_s16(out_val, data_l1, four);
out_val = vmlaq_s16(out_val, data_m, six);
out_val = vmlaq_s16(out_val, data_r1, four);
vst1q_s16(reinterpret_cast<int16_t *>(out.ptr()), out_val);
},
in, out);
}
NEGaussianPyramidVertKernel::NEGaussianPyramidVertKernel()
: _t2_load_offset(0)
{
}
BorderSize NEGaussianPyramidVertKernel::border_size() const
{
return BorderSize(2, 0);
}
void NEGaussianPyramidVertKernel::configure(const ITensor *input, ITensor *output, bool border_undefined)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S16);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != output->info()->dimension(0));
ARM_COMPUTE_ERROR_ON(input->info()->dimension(1) != 2 * output->info()->dimension(1));
for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i)
{
ARM_COMPUTE_ERROR_ON(input->info()->dimension(i) != output->info()->dimension(i));
}
_input = input;
_output = output;
// Configure kernel window
constexpr unsigned int num_elems_processed_per_iteration = 16;
constexpr unsigned int num_rows_processed_per_iteration = 2;
constexpr unsigned int num_elems_written_per_iteration = 16;
constexpr unsigned int num_rows_written_per_iteration = 1;
constexpr unsigned int num_elems_read_per_iteration = 16;
constexpr unsigned int num_rows_read_per_iteration = 5;
constexpr float scale_y = 0.5f;
Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration, num_rows_processed_per_iteration), border_undefined, border_size());
AccessWindowRectangle output_access(output->info(), 0, 0, num_elems_written_per_iteration, num_rows_written_per_iteration, 1.f, scale_y);
// Determine whether we need to load even or odd rows. See above for a
// detailed explanation.
_t2_load_offset = -border_size().top;
if((_input->info()->valid_region().anchor[1] + _input->info()->valid_region().shape[1]) % 2 == 0)
{
_t2_load_offset += 1;
}
update_window_and_padding(win,
AccessWindowRectangle(input->info(), 0, _t2_load_offset, num_elems_read_per_iteration, num_rows_read_per_iteration),
output_access);
ValidRegion valid_region = input->info()->valid_region();
valid_region.anchor.set(1, std::ceil((valid_region.anchor[1] + (border_undefined ? border_size().top : 0)) / 2.f));
valid_region.shape.set(1, (valid_region.shape[1] - (border_undefined ? border_size().bottom : 0)) / 2 - valid_region.anchor[1]);
output_access.set_valid_region(win, valid_region);
INEKernel::configure(win);
}
void NEGaussianPyramidVertKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(window.x().step() != 16);
ARM_COMPUTE_ERROR_ON(window.y().step() % 2);
ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr);
static const uint16x8_t six = vdupq_n_u16(6);
static const uint16x8_t four = vdupq_n_u16(4);
Window win_in(window);
// Need to load two times 8 values instead of 16 values once
win_in.set_dimension_step(Window::DimX, 8);
win_in.shift(Window::DimY, _t2_load_offset);
Iterator in(_input, win_in);
// Output's height is half of input's
Window win_out(window);
win_out.scale(Window::DimY, 0.5f);
Iterator out(_output, win_out);
const uint8_t *input_top2_ptr = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(0, 0));
const uint8_t *input_top_ptr = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(0, 1));
const uint8_t *input_mid_ptr = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(0, 2));
const uint8_t *input_low_ptr = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(0, 3));
const uint8_t *input_low2_ptr = _input->buffer() + _input->info()->offset_element_in_bytes(Coordinates(0, 4));
execute_window_loop(window, [&](const Coordinates & id)
{
// Low data
const uint16x8_t data_low_t2 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_top2_ptr + in.offset())));
const uint16x8_t data_low_t1 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_top_ptr + in.offset())));
const uint16x8_t data_low_m = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_mid_ptr + in.offset())));
const uint16x8_t data_low_b1 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_low_ptr + in.offset())));
const uint16x8_t data_low_b2 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_low2_ptr + in.offset())));
uint16x8_t out_low = vaddq_u16(data_low_t2, data_low_b2);
out_low = vmlaq_u16(out_low, data_low_t1, four);
out_low = vmlaq_u16(out_low, data_low_m, six);
out_low = vmlaq_u16(out_low, data_low_b1, four);
in.increment(Window::DimX);
// High data
const uint16x8_t data_high_t2 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_top2_ptr + in.offset())));
const uint16x8_t data_high_t1 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_top_ptr + in.offset())));
const uint16x8_t data_high_m = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_mid_ptr + in.offset())));
const uint16x8_t data_high_b1 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_low_ptr + in.offset())));
const uint16x8_t data_high_b2 = vreinterpretq_u16_s16(vld1q_s16(reinterpret_cast<const int16_t *>(input_low2_ptr + in.offset())));
uint16x8_t out_high = vaddq_u16(data_high_t2, data_high_b2);
out_high = vmlaq_u16(out_high, data_high_t1, four);
out_high = vmlaq_u16(out_high, data_high_m, six);
out_high = vmlaq_u16(out_high, data_high_b1, four);
vst1q_u8(out.ptr(), vcombine_u8(vqshrn_n_u16(out_low, 8), vqshrn_n_u16(out_high, 8)));
},
in, out);
}