blob: fb516ddd6e18fe379f178f819626b6cd485acb12 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(FIXED_POINT_POSITION)
#include "fixed_point.h"
#define ADD_OP(a, b) ADD_SAT_OP_EXPAND((a), (b), DATA_TYPE_PROMOTED, 8)
#define MUL_OP(a, b) MUL_SAT_OP_EXPAND(CONVERT((a), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)), CONVERT((b), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)), DATA_TYPE_PROMOTED, 8, FIXED_POINT_POSITION)
// There is no need to have a larger intermediate type for qs32 because all the arguments are already promoted
MULQ_SAT_IMPL(qs32x8, qs32x8)
#else /* FIXED_POINT_POSITION */
#undef CONVERT_SAT
#define ADD_OP(a, b) ((a) + (b))
#define MUL_OP(a, b) ((a) * (b))
#define CONVERT_SAT(a, b) ((a))
#endif /* FIXED_POINT_POSITION */
#if defined(DATA_TYPE) && defined(DATA_SIZE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
#if STRIDE_X == 3
#define INPUT_PIXEL_STR(data_size) extract_input_stride3_##data_size
#define INPUT_PIXEL(data_size) INPUT_PIXEL_STR(data_size)
#elif STRIDE_X == 2
#define INPUT_PIXEL(data_size) extract_input_stride2
#elif STRIDE_X == 1
#define INPUT_PIXEL(data_size) extract_input_stride1
#else /* STRIDE_X not equals 1, 2 or 3 */
#error "Only support strides 1, 2 and 3"
#endif /* STRIDE_X == 3 */
/** Extracts a 1D horizontal vector from the input tensor with stride as 1.
*
* @param[in] input_pixel Pointer to the first pixel.
*
* @return extracted input pixels.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride1(__global const DATA_TYPE *input_pixel)
{
return vload8(0, input_pixel);
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 2.
*
* @param[in] input_pixel Pointer to the first pixel.
*
* @return extracted input pixels.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride2(__global const DATA_TYPE *input_pixel)
{
VEC_DATA_TYPE(DATA_TYPE, 16)
temp = vload16(0, input_pixel);
return temp.s02468ace;
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 32-bit data size.
*
* @param[in] input_pixel Pointer to the first pixel.
*
* @return extracted input pixels.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3_32(__global const DATA_TYPE *input_pixel)
{
VEC_DATA_TYPE(DATA_TYPE, 4)
temp1 = vload4(0, input_pixel);
VEC_DATA_TYPE(DATA_TYPE, 4)
temp2 = vload4(0, input_pixel + 6);
VEC_DATA_TYPE(DATA_TYPE, 4)
temp3 = vload4(0, input_pixel + 12);
VEC_DATA_TYPE(DATA_TYPE, 4)
temp4 = vload4(0, input_pixel + 18);
return (VEC_DATA_TYPE(DATA_TYPE, 8))(temp1.s03, temp2.s03, temp3.s03, temp4.s03);
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 16-bit data size.
*
* @param[in] input_pixel Pointer to the first pixel.
*
* @return extracted input pixels.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3_16(__global const DATA_TYPE *input_pixel)
{
VEC_DATA_TYPE(DATA_TYPE, 8)
temp1 = vload8(0, input_pixel);
VEC_DATA_TYPE(DATA_TYPE, 8)
temp2 = vload8(0, input_pixel + 8);
VEC_DATA_TYPE(DATA_TYPE, 8)
temp3 = vload8(0, input_pixel + 16);
return (VEC_DATA_TYPE(DATA_TYPE, 8))(temp1.s036, temp2.s147, temp3.s25);
}
/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 8-bit data size.
*
* @param[in] input_pixel Pointer to the first pixel.
*
* @return extracted input pixels.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3_8(__global const DATA_TYPE *input_pixel)
{
VEC_DATA_TYPE(DATA_TYPE, 16)
temp1 = vload16(0, input_pixel);
VEC_DATA_TYPE(DATA_TYPE, 16)
temp2 = vload16(0, input_pixel + 12);
return (VEC_DATA_TYPE(DATA_TYPE, 8))(temp1.s0369, temp2.s0369);
}
/** This kernel performs a direct convolution to convolve the low three dimensions.
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The data size must be passed at compile time using -DDATA_SIZE e.g. -DDATA_SIZE=32
* @note The convolution stride x must be passed at compile time using -DSTRIDE_X e.g. -DSTRIDE_X=1
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p weights_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
*/
__kernel void direct_convolution1x1(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
#endif /* defined(HAS_BIAS) */
VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)
pixels = 0;
const uint z_index = get_global_id(2);
weights.ptr += z_index * weights_stride_w;
for(int d = 0; d < WEIGHTS_DEPTH; ++d)
{
DATA_TYPE weight = *(__global DATA_TYPE *)weights.ptr;
VEC_DATA_TYPE(DATA_TYPE, 8)
input_pixel = INPUT_PIXEL(DATA_SIZE)((__global DATA_TYPE *)src.ptr);
pixels = ADD_OP(pixels, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))weight, input_pixel));
src.ptr += src_stride_z;
weights.ptr += weights_stride_z;
}
#ifdef HAS_BIAS
pixels = ADD_OP(pixels, (VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, z_index))));
#endif /* defined(HAS_BIAS) */
vstore8(CONVERT_SAT(pixels, VEC_DATA_TYPE(DATA_TYPE, 8)), 0, (__global DATA_TYPE *)dst.ptr);
}
#endif // defined(DATA_TYPE) && defined(DATA_SIZE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
#if defined(WEIGHTS_DEPTH)
#define CONVOLUTION1x1_BIFROST(acc, src, weight_value) \
({ \
acc.s0 = mad(src.s0, weight_value, acc.s0); \
acc.s1 = mad(src.s1, weight_value, acc.s1); \
acc.s2 = mad(src.s2, weight_value, acc.s2); \
acc.s3 = mad(src.s3, weight_value, acc.s3); \
})
/** An optimized direct convolution 1x1 OpenCL kernel for Bifrost architectures when the data type is F32
*
* @note This OpenCL kernel works only with stride_x and stride_y equal to 1
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note In case biases, -DHAS_BIAS must to be passed at compile
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p weights_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
* @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
*/
__kernel void direct_convolution1x1_f32_bifrost(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w)
{
// Get the kernel index
const int kernel_index = get_global_id(2);
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
float4 acc0 = 0.0f;
float4 acc1 = 0.0f;
float4 acc2 = 0.0f;
float4 acc3 = 0.0f;
__global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);
__global uchar *src_addr = (__global uchar *)offset(&src, 0, 0);
for(ushort d = 0; d < (ushort)WEIGHTS_DEPTH; ++d)
{
// Load the weights
float weight = *((__global float *)weights_addr);
// Load values from row0 of input tensor
float4 src0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
float4 src1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
float4 src2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
float4 src3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));
CONVOLUTION1x1_BIFROST(acc0, src0, weight);
CONVOLUTION1x1_BIFROST(acc1, src1, weight);
CONVOLUTION1x1_BIFROST(acc2, src2, weight);
CONVOLUTION1x1_BIFROST(acc3, src3, weight);
src_addr += src_stride_z;
weights_addr += weights_stride_z;
}
#ifdef HAS_BIAS
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
float bias = (float) * ((__global float *)(vector_offset(&biases, kernel_index)));
acc0.s0 += bias;
acc0.s1 += bias;
acc0.s2 += bias;
acc0.s3 += bias;
acc1.s0 += bias;
acc1.s1 += bias;
acc1.s2 += bias;
acc1.s3 += bias;
acc2.s0 += bias;
acc2.s1 += bias;
acc2.s2 += bias;
acc2.s3 += bias;
acc3.s0 += bias;
acc3.s1 += bias;
acc3.s2 += bias;
acc3.s3 += bias;
#endif /* defined(HAS_BIAS) */
vstore4(acc0, 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
vstore4(acc1, 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
vstore4(acc2, 0, (__global float *)(dst.ptr + 2 * dst_stride_y));
vstore4(acc3, 0, (__global float *)(dst.ptr + 3 * dst_stride_y));
}
#endif // defined(WEIGHTS_DEPTH)