blob: 8c75ecddb2326f8dc22e01659bad64cfb0d5e29e [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#ifndef DATA_TYPE
#define DATA_TYPE short
#endif /* DATA_TYPE */
#ifndef DATA_TYPE_OUT
#define DATA_TYPE_OUT uchar
#endif /* DATA_TYPE_OUT */
/** Compute a 1D horizontal convolution of size 3 for 8 bytes assuming the input is made of 1 channel of 1 byte (i.e 8 pixels).
*
* @param[in] left_pixel Pointer to the left pixel.
* @param[in] left_coeff Weight of the left pixel
* @param[in] middle_coeff Weight of the middle pixel
* @param[in] right_coeff Weight of the right pixel
*
* @return a short8 containing 8 convoluted values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) convolution1x3(__global const uchar *left_pixel,
const short left_coeff,
const short middle_coeff,
const short right_coeff)
{
uchar16 temp = vload16(0, left_pixel);
VEC_DATA_TYPE(DATA_TYPE, 8)
left = CONVERT(temp.s01234567, VEC_DATA_TYPE(DATA_TYPE, 8));
VEC_DATA_TYPE(DATA_TYPE, 8)
middle = CONVERT(temp.s12345678, VEC_DATA_TYPE(DATA_TYPE, 8));
VEC_DATA_TYPE(DATA_TYPE, 8)
right = CONVERT(temp.s23456789, VEC_DATA_TYPE(DATA_TYPE, 8));
return left * (VEC_DATA_TYPE(DATA_TYPE, 8))left_coeff + middle * (VEC_DATA_TYPE(DATA_TYPE, 8))middle_coeff + right * (VEC_DATA_TYPE(DATA_TYPE, 8))right_coeff;
}
/** Apply a 3x3 convolution matrix to a single channel U8 input image and return the result.
*
* Convolution matrix layout:
*
* [ mat0, mat1, mat2 ]\n
* [ mat3, mat4, mat5 ]\n
* [ mat6, mat7, mat8 ]\n
*
* @param[in] src A pointer to source Image structure
* @param[in] mat0 Coefficient from the convolution matrix
* @param[in] mat1 Coefficient from the convolution matrix
* @param[in] mat2 Coefficient from the convolution matrix
* @param[in] mat3 Coefficient from the convolution matrix
* @param[in] mat4 Coefficient from the convolution matrix
* @param[in] mat5 Coefficient from the convolution matrix
* @param[in] mat6 Coefficient from the convolution matrix
* @param[in] mat0 Coefficient from the convolution matrix
* @param[in] mat7 Coefficient from the convolution matrix
* @param[in] mat8 Coefficient from the convolution matrix
* @param[in] scale Convolution matrix scale (Sum of the coefficients, or 1 if the sum is 0)
*
* @return a short8 containing 8 convoluted and scaled values.
*/
inline VEC_DATA_TYPE(DATA_TYPE, 8) convolution3x3(
Image *src,
const short mat0, const short mat1, const short mat2,
const short mat3, const short mat4, const short mat5,
const short mat6, const short mat7, const short mat8, uint scale)
{
// Output pixels
VEC_DATA_TYPE(DATA_TYPE, 8)
pixels;
// Row 0
pixels = convolution1x3(offset(src, -1, -1), mat0, mat1, mat2);
// Row
pixels += convolution1x3(offset(src, -1, 0), mat3, mat4, mat5);
// Row 2
pixels += convolution1x3(offset(src, -1, 1), mat6, mat7, mat8);
// Divide by the scale
return pixels / (VEC_DATA_TYPE(DATA_TYPE, 8))scale;
}
#ifndef DYNAMIC_MATRIX_CONVOLUTION
/** Apply a 3x3 static convolution matrix to a single channel U8 input image and output a single channel image.
*
* @attention The matrix coefficients(MAT0, MAT1, ... MAT8, SCALE), DATA_TYPE, and DATA_TYPE_OUT need to be passed at compile time.\n
* e.g. -DMAT0=1 -DMAT2=2, ...-DMAT8=8, -DSCALE=1, -DDATA_TYPE=int, -DDATA_TYPE_OUT=int
*
* @param[in] src_ptr Pointer to the source image
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] dst_ptr Pointer to the destination image. Supported data types: U8, S16
* @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
*/
__kernel void convolution3x3_static(
IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
VEC_DATA_TYPE(DATA_TYPE, 8)
pixels = convolution3x3(&src,
MAT0, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6, MAT7, MAT8, SCALE);
// Store the result as is in dst
vstore8(CONVERT_SAT(pixels, VEC_DATA_TYPE(DATA_TYPE_OUT, 8)), 0, (__global DATA_TYPE_OUT *)dst.ptr);
}
#endif // DYNAMIC_MATRIX_CONVOLUTION