| <a href="_top_k_v_8cpp.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Copyright (c) 2019 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> * of this software and associated documentation files (the "Software"), to</span></div><div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="comment"> * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno"> 20</span> <span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno"> 21</span> <span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno"> 22</span> <span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno"> 23</span> <span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno"> 24</span> <span class="preprocessor">#include "<a class="code" href="arm__compute_2core_2_types_8h.xhtml">arm_compute/core/Types.h</a>"</span></div><div class="line"><a name="l00025"></a><span class="lineno"> 25</span> <span class="preprocessor">#include "<a class="code" href="_c_p_p_top_k_v_8h.xhtml">arm_compute/runtime/CPP/functions/CPPTopKV.h</a>"</span></div><div class="line"><a name="l00026"></a><span class="lineno"> 26</span> <span class="preprocessor">#include "<a class="code" href="runtime_2_tensor_8h.xhtml">arm_compute/runtime/Tensor.h</a>"</span></div><div class="line"><a name="l00027"></a><span class="lineno"> 27</span> <span class="preprocessor">#include "<a class="code" href="_tensor_allocator_8h.xhtml">arm_compute/runtime/TensorAllocator.h</a>"</span></div><div class="line"><a name="l00028"></a><span class="lineno"> 28</span> <span class="preprocessor">#include "<a class="code" href="_accessor_8h.xhtml">tests/NEON/Accessor.h</a>"</span></div><div class="line"><a name="l00029"></a><span class="lineno"> 29</span> <span class="preprocessor">#include "<a class="code" href="_padding_calculator_8h.xhtml">tests/PaddingCalculator.h</a>"</span></div><div class="line"><a name="l00030"></a><span class="lineno"> 30</span> <span class="preprocessor">#include "tests/datasets/ShapeDatasets.h"</span></div><div class="line"><a name="l00031"></a><span class="lineno"> 31</span> <span class="preprocessor">#include "<a class="code" href="_asserts_8h.xhtml">tests/framework/Asserts.h</a>"</span></div><div class="line"><a name="l00032"></a><span class="lineno"> 32</span> <span class="preprocessor">#include "<a class="code" href="tests_2framework_2_macros_8h.xhtml">tests/framework/Macros.h</a>"</span></div><div class="line"><a name="l00033"></a><span class="lineno"> 33</span> <span class="preprocessor">#include "<a class="code" href="_datasets_8h.xhtml">tests/framework/datasets/Datasets.h</a>"</span></div><div class="line"><a name="l00034"></a><span class="lineno"> 34</span> <span class="preprocessor">#include "<a class="code" href="_validation_8h.xhtml">tests/validation/Validation.h</a>"</span></div><div class="line"><a name="l00035"></a><span class="lineno"> 35</span> <span class="preprocessor">#include "tests/validation/fixtures/PermuteFixture.h"</span></div><div class="line"><a name="l00036"></a><span class="lineno"> 36</span> </div><div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="keyword">namespace </span><a class="code" href="namespacearm__compute.xhtml">arm_compute</a></div><div class="line"><a name="l00038"></a><span class="lineno"> 38</span> {</div><div class="line"><a name="l00039"></a><span class="lineno"> 39</span> <span class="keyword">namespace </span>test</div><div class="line"><a name="l00040"></a><span class="lineno"> 40</span> {</div><div class="line"><a name="l00041"></a><span class="lineno"> 41</span> <span class="keyword">namespace </span>validation</div><div class="line"><a name="l00042"></a><span class="lineno"> 42</span> {</div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span> <span class="keyword">namespace</span></div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span> {</div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U, <span class="keyword">typename</span> T></div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span> <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6a5eef7d8485a2b8c04bf9b4638a90e9">fill_tensor</a>(U &&tensor, <span class="keyword">const</span> std::vector<T> &v)</div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span> {</div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span>  std::memcpy(tensor.data(), v.data(), <span class="keyword">sizeof</span>(T) * v.size());</div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span> }</div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span> } <span class="comment">// namespace</span></div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span> </div><div class="line"><a name="l00052"></a><span class="lineno"> 52</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8f65156abdd90180036790221cfc915f">TEST_SUITE</a>(CPP)</div><div class="line"><a name="l00053"></a><span class="lineno"> 53</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8f65156abdd90180036790221cfc915f">TEST_SUITE</a>(TopKV)</div><div class="line"><a name="l00054"></a><span class="lineno"> 54</span> </div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span> <span class="comment">// *INDENT-OFF*</span></div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span> <span class="comment">// clang-format off</span></div><div class="line"><a name="l00057"></a><span class="lineno"><a class="line" href="namespacearm__compute_1_1test_1_1validation.xhtml#a822e5814a7ccc966d5bac4d5f2fb0ebe"> 57</a></span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1f1266d183bfb4d479ec334fed85dc27">DATA_TEST_CASE</a>(Validate, framework::<a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cf">DatasetMode</a>::ALL, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a96f9e78d0c2a93f0e3a876eeae4be4b0">zip</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a96f9e78d0c2a93f0e3a876eeae4be4b0">zip</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a96f9e78d0c2a93f0e3a876eeae4be4b0">zip</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a96f9e78d0c2a93f0e3a876eeae4be4b0">zip</a>(</div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  framework::dataset::<a class="code" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">make</a>("PredictionsInfo", { <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(20, 10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>),</div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10, 20), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a56d8353718e6fdc78b8d69078a2cdb94">DataType::F16</a>), <span class="comment">// Mismatching batch_size</span></div><div class="line"><a name="l00060"></a><span class="lineno"> 60</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(20, 10), 1, <a class="code" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6aafb0fced528eaac5fe170b763cda5975">DataType::S8</a>), <span class="comment">// Unsupported data type</span></div><div class="line"><a name="l00061"></a><span class="lineno"> 61</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10, 10, 10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>), <span class="comment">// Wrong predictions dimensions</span></div><div class="line"><a name="l00062"></a><span class="lineno"> 62</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(20, 10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>)}), <span class="comment">// Wrong output dimension</span></div><div class="line"><a name="l00063"></a><span class="lineno"> 63</span>  <a class="code" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(<span class="stringliteral">"TargetsInfo"</span>,{ <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">DataType::U32</a>),</div><div class="line"><a name="l00064"></a><span class="lineno"> 64</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">DataType::U32</a>),</div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">DataType::U32</a>),</div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">DataType::U32</a>),</div><div class="line"><a name="l00067"></a><span class="lineno"> 67</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">DataType::U32</a>)})),</div><div class="line"><a name="l00068"></a><span class="lineno"> 68</span>  <a class="code" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(<span class="stringliteral">"OutputInfo"</span>,{ <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">DataType::U8</a>),</div><div class="line"><a name="l00069"></a><span class="lineno"> 69</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">DataType::U8</a>),</div><div class="line"><a name="l00070"></a><span class="lineno"> 70</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">DataType::U8</a>),</div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">DataType::U8</a>),</div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  <a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(1), 1, <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">DataType::U8</a>)})),</div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span> </div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span>  <a class="code" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(<span class="stringliteral">"k"</span>,{ 0, 1, 2, 3, 4 })),</div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span>  <a class="code" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(<span class="stringliteral">"Expected"</span>, {<span class="keyword">true</span>, <span class="keyword">false</span>, <span class="keyword">false</span>, <span class="keyword">false</span>, <span class="keyword">false</span> })),</div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span>  prediction_info, targets_info, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a25cae7166733a51d1354f3f395652782">output_info</a>, k, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#aa6e67bddae371a5731f6d4002e787299">expected</a>)</div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span> {</div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span>  <span class="keyword">const</span> Status status = <a class="code" href="classarm__compute_1_1_c_p_p_top_k_v.xhtml#a78f9128e5b414dc15c66d2d21d55117c">CPPTopKV::validate</a>(&prediction_info.clone()->set_is_resizable(<span class="keyword">false</span>),&targets_info.clone()->set_is_resizable(<span class="keyword">false</span>), &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a25cae7166733a51d1354f3f395652782">output_info</a>.clone()->set_is_resizable(<span class="keyword">false</span>), k);</div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3c8562a1f05d23f44aed87545b7892cf">ARM_COMPUTE_EXPECT</a>(<span class="keywordtype">bool</span>(status) == <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#aa6e67bddae371a5731f6d4002e787299">expected</a>, <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#aca1fd1d8935433e6ba2e3918214e07f9a6f3a603fac4d817f1848c3173b243b57">framework::LogLevel::ERRORS</a>);</div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span> }</div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span> <span class="comment">// clang-format on</span></div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span> <span class="comment">// *INDENT-ON*</span></div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span> </div><div class="line"><a name="l00084"></a><span class="lineno"><a class="line" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3f20e3c02fe7bf3da8f52d3fbaec2178"> 84</a></span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a963c5b8a3279186004d6a7e97a1b87e6">TEST_CASE</a>(Float, <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>)</div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span> {</div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> k = 5;</div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span> </div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> predictions = create_tensor<Tensor>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10, 20), <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>);</div><div class="line"><a name="l00089"></a><span class="lineno"> 89</span>  <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> targets = create_tensor<Tensor>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(20), <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">DataType::U32</a>);</div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span> </div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span>  predictions.<a class="code" href="classarm__compute_1_1_tensor.xhtml#adbd0cf83a8e1b335a9bf405a8e5019fa">allocator</a>()-><a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00092"></a><span class="lineno"> 92</span>  targets.<a class="code" href="classarm__compute_1_1_tensor.xhtml#adbd0cf83a8e1b335a9bf405a8e5019fa">allocator</a>()-><a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00093"></a><span class="lineno"> 93</span> </div><div class="line"><a name="l00094"></a><span class="lineno"> 94</span>  <span class="comment">// Fill the tensors with random pre-generated values</span></div><div class="line"><a name="l00095"></a><span class="lineno"> 95</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6a5eef7d8485a2b8c04bf9b4638a90e9">fill_tensor</a>(<a class="code" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>(predictions), std::vector<float></div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span>  {</div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span>  0.8147, 0.6557, 0.4387, 0.7513, 0.3517, 0.1622, 0.1067, 0.8530, 0.7803, 0.5470,</div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  0.9058, 0.0357, 0.3816, 0.2551, 0.8308, 0.7943, 0.9619, 0.6221, 0.3897, 0.2963,</div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span>  0.1270, 0.8491, 0.7655, 0.5060, 0.5853, 0.3112, 0.0046, 0.3510, 0.2417, 0.7447,</div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span>  0.9134, 0.9340, 0.7952, 0.6991, 0.5497, 0.5285, 0.7749, 0.5132, 0.4039, 0.1890,</div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span>  0.6324, 0.6787, 0.1869, 0.8909, 0.9172, 0.1656, 0.8173, 0.4018, 0.0965, 0.6868,</div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span>  0.0975, 0.7577, 0.4898, 0.9593, 0.2858, 0.6020, 0.8687, 0.0760, 0.1320, 0.1835,</div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span>  0.2785, 0.7431, 0.4456, 0.5472, 0.7572, 0.2630, 0.0844, 0.2399, 0.9421, 0.3685,</div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  0.5469, 0.3922, 0.6463, 0.1386, 0.7537, 0.6541, 0.3998, 0.1233, 0.9561, 0.6256,</div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  0.9575, 0.6555, 0.7094, 0.1493, 0.3804, 0.6892, 0.2599, 0.1839, 0.5752, 0.7802,</div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span>  0.9649, 0.1712, 0.7547, 0.2575, 0.5678, 0.7482, 0.8001, 0.2400, 0.0598, 0.0811,</div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  0.1576, 0.7060, 0.2760, 0.8407, 0.0759, 0.4505, 0.4314, 0.4173, 0.2348, 0.9294,</div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  0.9706, 0.0318, 0.6797, 0.2543, 0.0540, 0.0838, 0.9106, 0.0497, 0.3532, 0.7757,</div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span>  0.9572, 0.2769, 0.6551, 0.8143, 0.5308, 0.2290, 0.1818, 0.9027, 0.8212, 0.4868,</div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span>  0.4854, 0.0462, 0.1626, 0.2435, 0.7792, 0.9133, 0.2638, 0.9448, 0.0154, 0.4359,</div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span>  0.8003, 0.0971, 0.1190, 0.9293, 0.9340, 0.1524, 0.1455, 0.4909, 0.0430, 0.4468,</div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span>  0.1419, 0.8235, 0.4984, 0.3500, 0.1299, 0.8258, 0.1361, 0.4893, 0.1690, 0.3063,</div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span>  0.4218, 0.6948, 0.9597, 0.1966, 0.5688, 0.5383, 0.8693, 0.3377, 0.6491, 0.5085,</div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span>  0.9157, 0.3171, 0.3404, 0.2511, 0.4694, 0.9961, 0.5797, 0.9001, 0.7317, 0.5108,</div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span>  0.7922, 0.9502, 0.5853, 0.6160, 0.0119, 0.0782, 0.5499, 0.3692, 0.6477, 0.8176,</div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span>  0.9595, 0.0344, 0.2238, 0.4733, 0.3371, 0.4427, 0.1450, 0.1112, 0.4509, 0.7948</div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  });</div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span> </div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6a5eef7d8485a2b8c04bf9b4638a90e9">fill_tensor</a>(<a class="code" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>(targets), std::vector<int> { 1, 5, 7, 2, 8, 1, 2, 1, 2, 4, 3, 9, 4, 1, 9, 9, 4, 1, 2, 4 });</div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span> </div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  <span class="comment">// Determine the output through the CPP kernel</span></div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> output;</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  <a class="code" href="classarm__compute_1_1_c_p_p_top_k_v.xhtml">CPPTopKV</a> topkv;</div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  topkv.<a class="code" href="classarm__compute_1_1_c_p_p_top_k_v.xhtml#ac886f64c915621a8a213f760bc0d9134">configure</a>(&predictions, &targets, &output, k);</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span> </div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  output.allocator()->allocate();</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span> </div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  <span class="comment">// Run the kernel</span></div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  topkv.<a class="code" href="classarm__compute_1_1_i_c_p_p_simple_function.xhtml#a92fe532c342ae2b07956a65520c05362">run</a>();</div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span> </div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  <span class="comment">// Validate against the expected values</span></div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<uint8_t></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8ad4a9123e325f198138c3ecf1993616">expected_output</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(20), <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">DataType::U8</a>);</div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6a5eef7d8485a2b8c04bf9b4638a90e9">fill_tensor</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8ad4a9123e325f198138c3ecf1993616">expected_output</a>, std::vector<uint8_t> { 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0 });</div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ae02c6fc90d9c60c634bfa258049eb46b">validate</a>(<a class="code" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>(output), <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8ad4a9123e325f198138c3ecf1993616">expected_output</a>);</div><div class="line"><a name="l00135"></a><span class="lineno"> 135</span> }</div><div class="line"><a name="l00136"></a><span class="lineno"> 136</span> </div><div class="line"><a name="l00137"></a><span class="lineno"><a class="line" href="namespacearm__compute_1_1test_1_1validation.xhtml#a43d6fccd8ec91f04ba8f9e56f796c8f0"> 137</a></span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a963c5b8a3279186004d6a7e97a1b87e6">TEST_CASE</a>(Quantized, <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>)</div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span> {</div><div class="line"><a name="l00139"></a><span class="lineno"> 139</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> k = 5;</div><div class="line"><a name="l00140"></a><span class="lineno"> 140</span> </div><div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> predictions = create_tensor<Tensor>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(10, 20), <a class="code" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6af14462d71aa842202c3e4b272c7ec924">DataType::QASYMM8</a>, 1, <a class="code" href="classarm__compute_1_1_quantization_info.xhtml">QuantizationInfo</a>());</div><div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> targets = create_tensor<Tensor>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(20), <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">DataType::U32</a>);</div><div class="line"><a name="l00143"></a><span class="lineno"> 143</span> </div><div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  predictions.<a class="code" href="classarm__compute_1_1_tensor.xhtml#adbd0cf83a8e1b335a9bf405a8e5019fa">allocator</a>()-><a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00145"></a><span class="lineno"> 145</span>  targets.<a class="code" href="classarm__compute_1_1_tensor.xhtml#adbd0cf83a8e1b335a9bf405a8e5019fa">allocator</a>()-><a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00146"></a><span class="lineno"> 146</span> </div><div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  <span class="comment">// Fill the tensors with random pre-generated values</span></div><div class="line"><a name="l00148"></a><span class="lineno"> 148</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6a5eef7d8485a2b8c04bf9b4638a90e9">fill_tensor</a>(<a class="code" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>(predictions), std::vector<uint8_t></div><div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  {</div><div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  133, 235, 69, 118, 140, 179, 189, 203, 137, 157,</div><div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  242, 1, 196, 170, 166, 25, 102, 244, 24, 254,</div><div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  164, 119, 49, 198, 140, 135, 175, 84, 29, 136,</div><div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  246, 109, 74, 90, 185, 136, 181, 172, 35, 123,</div><div class="line"><a name="l00154"></a><span class="lineno"> 154</span>  62, 118, 24, 170, 134, 221, 114, 113, 174, 206,</div><div class="line"><a name="l00155"></a><span class="lineno"> 155</span>  174, 198, 148, 107, 255, 125, 6, 214, 127, 59,</div><div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  75, 83, 175, 216, 56, 101, 85, 197, 49, 128,</div><div class="line"><a name="l00157"></a><span class="lineno"> 157</span>  172, 201, 140, 214, 28, 172, 109, 43, 127, 231,</div><div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  178, 121, 109, 66, 29, 190, 70, 221, 38, 148,</div><div class="line"><a name="l00159"></a><span class="lineno"> 159</span>  18, 10, 165, 158, 17, 134, 51, 254, 15, 217,</div><div class="line"><a name="l00160"></a><span class="lineno"> 160</span>  66, 46, 166, 150, 104, 90, 211, 132, 218, 190,</div><div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  58, 185, 174, 139, 115, 39, 111, 227, 144, 151,</div><div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  171, 122, 163, 223, 94, 151, 228, 151, 238, 64,</div><div class="line"><a name="l00163"></a><span class="lineno"> 163</span>  217, 40, 242, 68, 196, 68, 101, 40, 179, 171,</div><div class="line"><a name="l00164"></a><span class="lineno"> 164</span>  89, 88, 54, 82, 161, 12, 197, 52, 150, 22,</div><div class="line"><a name="l00165"></a><span class="lineno"> 165</span>  200, 156, 182, 31, 198, 194, 102, 105, 209, 161,</div><div class="line"><a name="l00166"></a><span class="lineno"> 166</span>  173, 50, 61, 241, 239, 63, 207, 192, 226, 170,</div><div class="line"><a name="l00167"></a><span class="lineno"> 167</span>  2, 190, 31, 166, 250, 114, 194, 212, 254, 187,</div><div class="line"><a name="l00168"></a><span class="lineno"> 168</span>  155, 63, 156, 123, 50, 177, 97, 203, 1, 229,</div><div class="line"><a name="l00169"></a><span class="lineno"> 169</span>  100, 235, 116, 164, 36, 92, 56, 82, 222, 252</div><div class="line"><a name="l00170"></a><span class="lineno"> 170</span>  });</div><div class="line"><a name="l00171"></a><span class="lineno"> 171</span> </div><div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6a5eef7d8485a2b8c04bf9b4638a90e9">fill_tensor</a>(<a class="code" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>(targets), std::vector<int> { 1, 5, 7, 2, 8, 1, 2, 1, 2, 4, 3, 9, 4, 1, 9, 9, 4, 1, 2, 4 });</div><div class="line"><a name="l00173"></a><span class="lineno"> 173</span> </div><div class="line"><a name="l00174"></a><span class="lineno"> 174</span>  <span class="comment">// Determine the output through the CPP kernel</span></div><div class="line"><a name="l00175"></a><span class="lineno"> 175</span>  <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> output;</div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span>  <a class="code" href="classarm__compute_1_1_c_p_p_top_k_v.xhtml">CPPTopKV</a> topkv;</div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  topkv.<a class="code" href="classarm__compute_1_1_c_p_p_top_k_v.xhtml#ac886f64c915621a8a213f760bc0d9134">configure</a>(&predictions, &targets, &output, k);</div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span> </div><div class="line"><a name="l00179"></a><span class="lineno"> 179</span>  output.allocator()->allocate();</div><div class="line"><a name="l00180"></a><span class="lineno"> 180</span> </div><div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  <span class="comment">// Run the kernel</span></div><div class="line"><a name="l00182"></a><span class="lineno"> 182</span>  topkv.<a class="code" href="classarm__compute_1_1_i_c_p_p_simple_function.xhtml#a92fe532c342ae2b07956a65520c05362">run</a>();</div><div class="line"><a name="l00183"></a><span class="lineno"> 183</span> </div><div class="line"><a name="l00184"></a><span class="lineno"> 184</span>  <span class="comment">// Validate against the expected values</span></div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<uint8_t></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8ad4a9123e325f198138c3ecf1993616">expected_output</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(20), <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">DataType::U8</a>);</div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6a5eef7d8485a2b8c04bf9b4638a90e9">fill_tensor</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8ad4a9123e325f198138c3ecf1993616">expected_output</a>, std::vector<uint8_t> { 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0 });</div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ae02c6fc90d9c60c634bfa258049eb46b">validate</a>(<a class="code" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>(output), <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8ad4a9123e325f198138c3ecf1993616">expected_output</a>);</div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span> }</div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span> </div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ed31007ae463a3cec24a581f3651f6">TEST_SUITE_END</a>() <span class="comment">// TopKV</span></div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ed31007ae463a3cec24a581f3651f6">TEST_SUITE_END</a>() <span class="comment">// CPP</span></div><div class="line"><a name="l00192"></a><span class="lineno"> 192</span> } <span class="comment">// namespace validation</span></div><div class="line"><a name="l00193"></a><span class="lineno"> 193</span> } <span class="comment">// namespace test</span></div><div class="line"><a name="l00194"></a><span class="lineno"> 194</span> } <span class="comment">// namespace arm_compute</span></div><div class="ttc" id="_accessor_8h_xhtml"><div class="ttname"><a href="_accessor_8h.xhtml">Accessor.h</a></div></div> |