blob: cba339064196a3431f3d377d52dca4bf9ea05346 [file] [log] [blame]
/*
* Copyright (c) 2016-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGEMMMatrixVectorMultiplyKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/INEKernel.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
#include <tuple>
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input0);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::S32, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(input0->data_type()) && (output->data_type() != DataType::S32));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_float(input0->data_type()) && (output->data_type() != input0->data_type()));
ARM_COMPUTE_RETURN_ERROR_ON(input0->num_dimensions() == input1->num_dimensions());
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(2) != input1->dimension(1));
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(DataLayoutDimension::HEIGHT) != output->dimension(DataLayoutDimension::HEIGHT));
ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(DataLayoutDimension::WIDTH) != output->dimension(DataLayoutDimension::WIDTH));
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output)
{
const unsigned int num_elems_read_per_iteration = 16 / input0->element_size();
Window win = calculate_max_window(*input0, Steps(num_elems_read_per_iteration));
AccessWindowHorizontal input0_access(input0, 0, num_elems_read_per_iteration);
AccessWindowHorizontal input1_access(input1, 0, num_elems_read_per_iteration);
AccessWindowStatic output_access(output, 0, 0, output->dimension(0), output->dimension(1));
bool window_changed = update_window_and_padding(win, input0_access, input1_access, output_access);
output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
template <typename I0, typename I1, typename O>
void NEGEMMMatrixVectorMultiplyKernel::matrix_vector_multiply(const Window &window_in, const Window &window_w, const Window &window_out)
{
ARM_COMPUTE_ERROR("Unsupported data types");
ARM_COMPUTE_UNUSED(window_in);
ARM_COMPUTE_UNUSED(window_w);
ARM_COMPUTE_UNUSED(window_out);
}
namespace arm_compute
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
void NEGEMMMatrixVectorMultiplyKernel::matrix_vector_multiply<half, half, half>(const Window &window_in,
const Window &window_w,
const Window &window_out)
{
Iterator in(_input0, window_in);
Iterator in2(_input1, window_w);
Iterator out(_output, window_out);
const int input_w = _input0->info()->dimension(0);
const int input_h = _input0->info()->dimension(1);
const int input_stride_x = _input0->info()->strides_in_bytes().x();
const int weights_stride_x = _input1->info()->strides_in_bytes().x();
const int weights_stride_y = _input1->info()->strides_in_bytes().y();
const int output_stride_x = _output->info()->strides_in_bytes().x();
execute_window_loop(window_in, [&](const Coordinates & id)
{
// Get pointers
const uint8_t *const input_ptr = in.ptr();
const uint8_t *const weights_ptr = in2.ptr() + id.z() * weights_stride_y;
auto output_ptr = reinterpret_cast<__fp16 *>(out.ptr() + (id.y() + id.z() * input_h) * output_stride_x);
float16x8_t row_dot = vdupq_n_f16(0.f);
for(int i = 0; i < input_w; i += 8)
{
const auto input = vld1q_f16(reinterpret_cast<const __fp16 *>(input_ptr + i * input_stride_x));
const auto weights = vld1q_f16(reinterpret_cast<const __fp16 *>(weights_ptr + i * weights_stride_x));
row_dot = vaddq_f16(row_dot, vmulq_f16(input, weights));
}
auto temp = vadd_f16(vget_high_f16(row_dot), vget_low_f16(row_dot));
temp = vpadd_f16(temp, temp);
temp = vpadd_f16(temp, temp);
*output_ptr = vget_lane_f16(temp, 0);
},
in, in2, out);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <>
void NEGEMMMatrixVectorMultiplyKernel::matrix_vector_multiply<float, float, float>(const Window &window_in,
const Window &window_w,
const Window &window_out)
{
Iterator in(_input0, window_in);
Iterator in2(_input1, window_w);
Iterator out(_output, window_out);
const int input_w = _input0->info()->dimension(0);
const int input_h = _input0->info()->dimension(1);
const int input_stride_x = _input0->info()->strides_in_bytes().x();
const int weights_stride_x = _input1->info()->strides_in_bytes().x();
const int weights_stride_y = _input1->info()->strides_in_bytes().y();
const int output_stride_x = _output->info()->strides_in_bytes().x();
execute_window_loop(window_in, [&](const Coordinates & id)
{
// Get pointers
const uint8_t *const input_ptr = in.ptr();
const uint8_t *const weights_ptr = in2.ptr() + id.z() * weights_stride_y;
auto output_ptr = reinterpret_cast<float *>(out.ptr() + (id.y() + id.z() * input_h) * output_stride_x);
float32x4_t row_dot = vdupq_n_f32(0.f);
for(int i = 0; i < input_w; i += 4)
{
const auto input = vld1q_f32(reinterpret_cast<const float *>(input_ptr + i * input_stride_x));
const auto weights = vld1q_f32(reinterpret_cast<const float *>(weights_ptr + i * weights_stride_x));
row_dot = vaddq_f32(row_dot, vmulq_f32(input, weights));
}
auto temp = vadd_f32(vget_high_f32(row_dot), vget_low_f32(row_dot));
temp = vpadd_f32(temp, temp);
*output_ptr = vget_lane_f32(temp, 0);
},
in, in2, out);
}
template <>
void NEGEMMMatrixVectorMultiplyKernel::matrix_vector_multiply<uint8_t, uint8_t, int32_t>(const Window &window_in,
const Window &window_w,
const Window &window_out)
{
Iterator in(_input0, window_in);
Iterator in2(_input1, window_w);
Iterator out(_output, window_out);
const int input_offset = -_input0->info()->quantization_info().offset;
const int weights_offset = -_input1->info()->quantization_info().offset;
const int input_w = _input0->info()->dimension(0);
const int input_h = _input0->info()->dimension(1);
const int input_stride_x = _input0->info()->strides_in_bytes().x();
const int weights_stride_x = _input1->info()->strides_in_bytes().x();
const int weights_stride_y = _input1->info()->strides_in_bytes().y();
const int output_stride_x = _output->info()->strides_in_bytes().x();
const int read_step = 16 / _input0->info()->element_size();
const int32x4_t v_input_offset = vdupq_n_s32(input_offset);
const int32x4_t v_weights_offset = vdupq_n_s32(weights_offset);
execute_window_loop(window_in, [&](const Coordinates & id)
{
// Get pointers
const uint8_t *const input_ptr = in.ptr();
const uint8_t *const weights_ptr = in2.ptr() + id.z() * weights_stride_y;
auto output_ptr = reinterpret_cast<int32_t *>(out.ptr() + (id.y() + id.z() * input_h) * output_stride_x);
int32x4_t row_dot = vdupq_n_s32(0);
for(int i = 0; i < input_w; i += read_step)
{
// Read values
const auto input = vld1q_u8(reinterpret_cast<const uint8_t *>(input_ptr + i * input_stride_x));
const auto weights = vld1q_u8(reinterpret_cast<const uint8_t *>(weights_ptr + i * weights_stride_x));
// Add offsets
const int32x4x4_t input_s32 =
{
{
vaddw_s16(v_input_offset, vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vget_low_u8(input))))),
vaddw_s16(v_input_offset, vreinterpret_s16_u16(vget_high_u16(vmovl_u8(vget_low_u8(input))))),
vaddw_s16(v_input_offset, vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vget_high_u8(input))))),
vaddw_s16(v_input_offset, vreinterpret_s16_u16(vget_high_u16(vmovl_u8(vget_high_u8(input)))))
}
};
const int32x4x4_t weights_s32 =
{
{
vaddw_s16(v_weights_offset, vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vget_low_u8(weights))))),
vaddw_s16(v_weights_offset, vreinterpret_s16_u16(vget_high_u16(vmovl_u8(vget_low_u8(weights))))),
vaddw_s16(v_weights_offset, vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vget_high_u8(weights))))),
vaddw_s16(v_weights_offset, vreinterpret_s16_u16(vget_high_u16(vmovl_u8(vget_high_u8(weights)))))
}
};
// Dot
row_dot = vaddq_s32(row_dot, vmulq_s32(input_s32.val[0], weights_s32.val[0]));
row_dot = vaddq_s32(row_dot, vmulq_s32(input_s32.val[1], weights_s32.val[1]));
row_dot = vaddq_s32(row_dot, vmulq_s32(input_s32.val[2], weights_s32.val[2]));
row_dot = vaddq_s32(row_dot, vmulq_s32(input_s32.val[3], weights_s32.val[3]));
}
// Reduction
auto temp = vadd_s32(vget_high_s32(row_dot), vget_low_s32(row_dot));
temp = vpadd_s32(temp, temp);
*output_ptr = vget_lane_s32(temp, 0);
},
in, in2, out);
}
} //namespace arm_compute
NEGEMMMatrixVectorMultiplyKernel::NEGEMMMatrixVectorMultiplyKernel()
: _func(nullptr), _input0(nullptr), _input1(nullptr), _output(nullptr), _border_size(0)
{
}
BorderSize NEGEMMMatrixVectorMultiplyKernel::border_size() const
{
return _border_size;
}
void NEGEMMMatrixVectorMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info()));
_input0 = input0;
_input1 = input1;
_output = output;
// Set appropriate function to run
switch(input0->info()->data_type())
{
case DataType::QASYMM8:
_func = &NEGEMMMatrixVectorMultiplyKernel::matrix_vector_multiply<uint8_t, uint8_t, int32_t>;
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
_func = &NEGEMMMatrixVectorMultiplyKernel::matrix_vector_multiply<half, half, half>;
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
case DataType::F32:
_func = &NEGEMMMatrixVectorMultiplyKernel::matrix_vector_multiply<float, float, float>;
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
// Configure kernel window
const unsigned int num_elems_read_per_iteration = 16 / _input0->info()->element_size();
const unsigned int border_x = ceil_to_multiple(input0->info()->dimension(0), num_elems_read_per_iteration) - input0->info()->dimension(0);
_border_size = BorderSize(0, border_x);
auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
Status NEGEMMMatrixVectorMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(), input1->clone().get(), output->clone().get()).first);
return Status{};
}
void NEGEMMMatrixVectorMultiplyKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
Window window_slice = window.first_slice_window_3D();
Window window_in(window);
Window window_weights(window_slice);
Window window_out(window);
// Setup input0 slice
window_in.set(Window::DimX, Window::Dimension(0, _input0->info()->dimension(0), _input0->info()->dimension(0)));
window_in.set(Window::DimY, Window::Dimension(0, _input0->info()->dimension(1), 1));
window_in.set(Window::DimZ, Window::Dimension(0, _input0->info()->dimension(2), 1));
// Setup input1 and output slice. Their dimensions are increased in the kernel.
window_weights.set(Window::DimX, Window::Dimension(0, 0, 0));
window_weights.set(Window::DimY, Window::Dimension(0, 0, 0));
window_weights.set(Window::DimZ, Window::Dimension(0, 0, 0));
window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
window_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
if(_func != nullptr)
{
(this->*_func)(window_in, window_weights, window_out);
}
}