| <a href="reference_2_winograd_8cpp.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Copyright (c) 2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> * of this software and associated documentation files (the "Software"), to</span></div><div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="comment"> * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno"> 20</span> <span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno"> 21</span> <span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno"> 22</span> <span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno"> 23</span> <span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno"> 24</span> <span class="preprocessor">#include "<a class="code" href="_winograd_8h.xhtml">Winograd.h</a>"</span></div><div class="line"><a name="l00025"></a><span class="lineno"> 25</span> </div><div class="line"><a name="l00026"></a><span class="lineno"> 26</span> <span class="preprocessor">#include "<a class="code" href="tests_2validation_2_helpers_8h.xhtml">tests/validation/Helpers.h</a>"</span></div><div class="line"><a name="l00027"></a><span class="lineno"> 27</span> <span class="preprocessor">#include "<a class="code" href="tests_2validation_2reference_2_utils_8h.xhtml">tests/validation/reference/Utils.h</a>"</span></div><div class="line"><a name="l00028"></a><span class="lineno"> 28</span> </div><div class="line"><a name="l00029"></a><span class="lineno"> 29</span> <span class="preprocessor">#include "<a class="code" href="arm__compute_2core_2_types_8h.xhtml">arm_compute/core/Types.h</a>"</span></div><div class="line"><a name="l00030"></a><span class="lineno"> 30</span> </div><div class="line"><a name="l00031"></a><span class="lineno"> 31</span> <span class="preprocessor">#include <algorithm></span></div><div class="line"><a name="l00032"></a><span class="lineno"> 32</span> <span class="preprocessor">#include <cmath></span></div><div class="line"><a name="l00033"></a><span class="lineno"> 33</span> </div><div class="line"><a name="l00034"></a><span class="lineno"> 34</span> <span class="keyword">namespace </span><a class="code" href="namespacearm__compute.xhtml">arm_compute</a></div><div class="line"><a name="l00035"></a><span class="lineno"> 35</span> {</div><div class="line"><a name="l00036"></a><span class="lineno"> 36</span> <span class="keyword">namespace </span>test</div><div class="line"><a name="l00037"></a><span class="lineno"> 37</span> {</div><div class="line"><a name="l00038"></a><span class="lineno"> 38</span> <span class="keyword">namespace </span>validation</div><div class="line"><a name="l00039"></a><span class="lineno"> 39</span> {</div><div class="line"><a name="l00040"></a><span class="lineno"> 40</span> <span class="keyword">namespace </span>reference</div><div class="line"><a name="l00041"></a><span class="lineno"> 41</span> {</div><div class="line"><a name="l00042"></a><span class="lineno"> 42</span> <span class="keyword">namespace</span></div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span> {</div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span> <span class="keywordtype">void</span> initialize_matrix_transform(SimpleTensor<T> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ae9d2dc29c2789c253406f9b304cc75a8">src</a>, <span class="keyword">const</span> Size2D &output_tile_size, <span class="keyword">const</span> Size2D &kernel_size, <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871e">WinogradTransformType</a> winograd_transform_type)</div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span> {</div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span>  <span class="comment">// Winograd input transform matrices</span></div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> imatrix2x2_3x3[] =</div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span>  {</div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span>  1.0f, 0.0f, -1.0f, 0.0f,</div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span>  0.0f, 1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00052"></a><span class="lineno"> 52</span>  0.0f, -1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00053"></a><span class="lineno"> 53</span>  0.0f, 1.0f, 0.0f, -1.0f</div><div class="line"><a name="l00054"></a><span class="lineno"> 54</span>  };</div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span> </div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> imatrix4x4_3x3[] =</div><div class="line"><a name="l00057"></a><span class="lineno"> 57</span>  {</div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  4.0f, 0.0f, -5.0f, 0.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span>  0.0f, -4.0f, -4.0f, 1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00060"></a><span class="lineno"> 60</span>  0.0f, 4.0f, -4.0f, -1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00061"></a><span class="lineno"> 61</span>  0.0f, -2.0f, -1.0f, 2.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00062"></a><span class="lineno"> 62</span>  0.0f, 2.0f, -1.0f, -2.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00063"></a><span class="lineno"> 63</span>  0.0f, 4.0f, 0.0f, -5.0f, 0.0f, 1.0f,</div><div class="line"><a name="l00064"></a><span class="lineno"> 64</span>  };</div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span> </div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> imatrix4x4_5x5[] =</div><div class="line"><a name="l00067"></a><span class="lineno"> 67</span>  {</div><div class="line"><a name="l00068"></a><span class="lineno"> 68</span>  1.f, 0.f, -21.f / 4.f, 0.f, 21.f / 4.f, 0.f, -1.f, 0.f,</div><div class="line"><a name="l00069"></a><span class="lineno"> 69</span>  0.f, 1.f, 1.f, -17.f / 4.f, -17.f / 4.f, 1.f, 1.f, 0.f,</div><div class="line"><a name="l00070"></a><span class="lineno"> 70</span>  0.f, -1.f, 1.f, 17.f / 4.f, -17.f / 4.f, -1.f, 1.f, 0.f,</div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span>  0.f, 1.f / 2.f, 1.f / 4.f, -5.f / 2.f, -5.f / 4.f, 2.f, 1.f, 0.f,</div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  0.f, -1.f / 2.f, 1.f / 4.f, 5.f / 2.f, -5.f / 4.f, -2.f, 1.f, 0.f,</div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span>  0.f, 2.f, 4.f, -5.f / 2.f, -5.f, 1.f / 2.f, 1.f, 0.f,</div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span>  0.f, -2.f, 4.f, 5.f / 2.f, -5.f, -1.f / 2.f, 1.f, 0.f,</div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span>  0.f, -1.f, 0.f, 21.f / 4.f, 0.f, -21.f / 4.f, 0.f, 1.f</div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span>  };</div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span> </div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> imatrix2x1_7x7[] =</div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  {</div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  -36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  0.0f, -36.0f, 36.0f, 13.0f, -13.0f, -1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span>  0.0f, 36.0f, 36.0f, -13.0f, -13.0f, 1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span>  0.0f, -18.0f, 9.0f, 20.0f, -10.0f, -2.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  0.0f, 18.0f, 9.0f, -20.0f, -10.0f, 2.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span>  0.0f, -12.0f, 4.0f, 15.0f, -5.0f, -3.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span>  0.0f, 12.0f, 4.0f, -15.0f, -5.0f, 3.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span>  0.0f, -36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f</div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  };</div><div class="line"><a name="l00089"></a><span class="lineno"> 89</span> </div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span>  <span class="comment">// ------------------------------------------</span></div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span> </div><div class="line"><a name="l00092"></a><span class="lineno"> 92</span>  <span class="comment">// Winograd filter transform matrices</span></div><div class="line"><a name="l00093"></a><span class="lineno"> 93</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> fmatrix2x2_3x3[] =</div><div class="line"><a name="l00094"></a><span class="lineno"> 94</span>  {</div><div class="line"><a name="l00095"></a><span class="lineno"> 95</span>  1.0f, 0.0f, 0.0f,</div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span>  0.5f, 0.5f, 0.5f,</div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span>  0.5f, -0.5f, 0.5f,</div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  0.0f, 0.0f, 1.0f</div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span>  };</div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span> </div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> fmatrix4x4_3x3[] =</div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span>  {</div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span>  0.25f, 0.0f, 0.0f,</div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  -1.0f / 6.0f, -1.0f / 6.0f, -1.0f / 6.0f,</div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  -1.0f / 6.0f, 1.0f / 6.0f, -1.0f / 6.0f,</div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span>  1.0f / 24.0f, 1.0f / 12.0f, 1.0f / 6.0f,</div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  1.0f / 24.0f, -1.0f / 12.0f, 1.0f / 6.0f,</div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  0.0f, 0.0f, 1.0f</div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span>  };</div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span> </div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> fmatrix4x4_5x5[] =</div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span>  {</div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span>  1.0f, 0.0f, 0.0f, 0.0f, 0.0f,</div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span>  -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f,</div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span>  -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f,</div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span>  1.0f / 90.0f, 1.0f / 45.0f, 2.0f / 45.0f, 4.0f / 45.0f, 8.0f / 45.0f,</div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  1.0f / 90.0f, -1.0f / 45.0f, 2.0f / 45.0f, -4.0f / 45.0f, 8.0f / 45.0f,</div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span>  4.0f / 45.0f, 2.0f / 45.0f, 1.0f / 45.0f, 1.0f / 90.0f, 1.0f / 180.0f,</div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  4.0f / 45.0f, -2.0f / 45.0f, 1.0f / 45.0f, -1.0f / 90.0f, 1.0f / 180.0f,</div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  0.0f, 0.0f, 0.0f, 0.0f, 1.0f</div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span> </div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  };</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span> </div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> fmatrix2x1_7x7[] =</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  {</div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  -1.0f / 36.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f,</div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f,</div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  -1.0f / 120.0f, 1.0f / 60.0f, -1.0f / 30.0f, 1.0f / 15.0f, -2.0f / 15.0f, 4.0f / 15.0f, -8.0f / 15.0f,</div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  -1.0f / 120.0f, -1.0f / 60.0f, -1.0f / 30.0f, -1.0f / 15.0f, -2.0f / 15.0f, -4.0f / 15.0f, -8.0f / 15.0f,</div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  1.0f / 720.0f, -1.0f / 240.0f, 1.0f / 80.0f, -3.0f / 80.0f, 9.0f / 80.0f, -27.0f / 80.0f, 81.0f / 80.0f,</div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  1.0f / 720.0f, 1.0f / 240.0f, 1.0f / 80.0f, 3.0f / 80.0f, 9.0f / 80.0f, 27.0f / 80.0f, 81.0f / 80.0f,</div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f</div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  };</div><div class="line"><a name="l00135"></a><span class="lineno"> 135</span> </div><div class="line"><a name="l00136"></a><span class="lineno"> 136</span>  <span class="comment">// ------------------------------------------</span></div><div class="line"><a name="l00137"></a><span class="lineno"> 137</span> </div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span>  <span class="comment">// Winograd output transform matrices</span></div><div class="line"><a name="l00139"></a><span class="lineno"> 139</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> omatrix2x2_3x3[] =</div><div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  {</div><div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  1.0f, 1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  0.0f, 1.0f, -1.0f, -1.0f</div><div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  };</div><div class="line"><a name="l00144"></a><span class="lineno"> 144</span> </div><div class="line"><a name="l00145"></a><span class="lineno"> 145</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> omatrix4x4_3x3[] =</div><div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  {</div><div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00148"></a><span class="lineno"> 148</span>  0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 0.0f,</div><div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 0.0f,</div><div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f</div><div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  };</div><div class="line"><a name="l00152"></a><span class="lineno"> 152</span> </div><div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> omatrix4x4_5x5[] =</div><div class="line"><a name="l00154"></a><span class="lineno"> 154</span>  {</div><div class="line"><a name="l00155"></a><span class="lineno"> 155</span>  1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 8.0f, 8.0f, 0.0f,</div><div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 4.0f, -4.0f, 0.0f,</div><div class="line"><a name="l00157"></a><span class="lineno"> 157</span>  0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 2.0f, 2.0f, 0.0f,</div><div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f, -1.0f, 1.0f</div><div class="line"><a name="l00159"></a><span class="lineno"> 159</span>  };</div><div class="line"><a name="l00160"></a><span class="lineno"> 160</span> </div><div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">float</span> omatrix2x1_7x7[] =</div><div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  {</div><div class="line"><a name="l00163"></a><span class="lineno"> 163</span>  1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,</div><div class="line"><a name="l00164"></a><span class="lineno"> 164</span>  0.0f, -1.0f, 1.0f, -2.0f, 2.0f, -3.0f, 3.0f, 1.0f</div><div class="line"><a name="l00165"></a><span class="lineno"> 165</span>  };</div><div class="line"><a name="l00166"></a><span class="lineno"> 166</span> </div><div class="line"><a name="l00167"></a><span class="lineno"> 167</span>  <span class="comment">// ------------------------------------------</span></div><div class="line"><a name="l00168"></a><span class="lineno"> 168</span> </div><div class="line"><a name="l00169"></a><span class="lineno"> 169</span>  <span class="keyword">using</span> WinogradKey = std::tuple<std::pair<int, int>, std::pair<int, int>, <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871e">WinogradTransformType</a>>;</div><div class="line"><a name="l00170"></a><span class="lineno"> 170</span> </div><div class="line"><a name="l00171"></a><span class="lineno"> 171</span>  <span class="comment">// Key = (Output tile size, Kernel size, Winograd transform type)</span></div><div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  <span class="keyword">static</span> std::map<WinogradKey, const float *> matrix_map =</div><div class="line"><a name="l00173"></a><span class="lineno"> 173</span>  {</div><div class="line"><a name="l00174"></a><span class="lineno"> 174</span>  { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix2x2_3x3 },</div><div class="line"><a name="l00175"></a><span class="lineno"> 175</span>  { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix4x4_3x3 },</div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span>  { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix2x2_3x3 },</div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix4x4_3x3 },</div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span>  { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix2x2_3x3 },</div><div class="line"><a name="l00179"></a><span class="lineno"> 179</span>  { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix4x4_3x3 },</div><div class="line"><a name="l00180"></a><span class="lineno"> 180</span>  { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix4x4_5x5 },</div><div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix4x4_5x5 },</div><div class="line"><a name="l00182"></a><span class="lineno"> 182</span>  { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix2x1_7x7 },</div><div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix2x1_7x7 },</div><div class="line"><a name="l00184"></a><span class="lineno"> 184</span>  { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>), imatrix4x4_5x5 },</div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix2x2_3x3 },</div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix4x4_3x3 },</div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix2x2_3x3 },</div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span>  { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix4x4_3x3 },</div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix2x2_3x3 },</div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix4x4_3x3 },</div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix4x4_5x5 },</div><div class="line"><a name="l00192"></a><span class="lineno"> 192</span>  { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix4x4_5x5 },</div><div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix2x1_7x7 },</div><div class="line"><a name="l00194"></a><span class="lineno"> 194</span>  { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix2x1_7x7 },</div><div class="line"><a name="l00195"></a><span class="lineno"> 195</span>  { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>), fmatrix4x4_5x5 },</div><div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix2x2_3x3 },</div><div class="line"><a name="l00197"></a><span class="lineno"> 197</span>  { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix4x4_3x3 },</div><div class="line"><a name="l00198"></a><span class="lineno"> 198</span>  { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix2x2_3x3 },</div><div class="line"><a name="l00199"></a><span class="lineno"> 199</span>  { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix4x4_3x3 },</div><div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix2x2_3x3 },</div><div class="line"><a name="l00201"></a><span class="lineno"> 201</span>  { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix4x4_3x3 },</div><div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix4x4_5x5 },</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix4x4_5x5 },</div><div class="line"><a name="l00204"></a><span class="lineno"> 204</span>  { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix2x1_7x7 },</div><div class="line"><a name="l00205"></a><span class="lineno"> 205</span>  { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix2x1_7x7 },</div><div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>), omatrix4x4_5x5 },</div><div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  };</div><div class="line"><a name="l00208"></a><span class="lineno"> 208</span> </div><div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  <span class="comment">// Find transformation matrix</span></div><div class="line"><a name="l00210"></a><span class="lineno"> 210</span>  std::map<WinogradKey, const float *>::iterator it;</div><div class="line"><a name="l00211"></a><span class="lineno"> 211</span> </div><div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  it = matrix_map.find(WinogradKey(std::pair<int, int>(output_tile_size.width, output_tile_size.height),</div><div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  std::pair<int, int>(kernel_size.width, kernel_size.height),</div><div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  winograd_transform_type));</div><div class="line"><a name="l00215"></a><span class="lineno"> 215</span> </div><div class="line"><a name="l00216"></a><span class="lineno"> 216</span>  <span class="keywordtype">float</span> <span class="keyword">const</span> *matrix_values = <span class="keyword">nullptr</span>;</div><div class="line"><a name="l00217"></a><span class="lineno"> 217</span>  <span class="keywordflow">if</span>(it != matrix_map.end())</div><div class="line"><a name="l00218"></a><span class="lineno"> 218</span>  {</div><div class="line"><a name="l00219"></a><span class="lineno"> 219</span>  <span class="comment">// Get matrix pointer</span></div><div class="line"><a name="l00220"></a><span class="lineno"> 220</span>  matrix_values = it->second;</div><div class="line"><a name="l00221"></a><span class="lineno"> 221</span>  }</div><div class="line"><a name="l00222"></a><span class="lineno"> 222</span>  <span class="keywordflow">else</span></div><div class="line"><a name="l00223"></a><span class="lineno"> 223</span>  {</div><div class="line"><a name="l00224"></a><span class="lineno"> 224</span>  <a class="code" href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a>(<span class="stringliteral">"Winograd configuration not supported"</span>);</div><div class="line"><a name="l00225"></a><span class="lineno"> 225</span>  }</div><div class="line"><a name="l00226"></a><span class="lineno"> 226</span> </div><div class="line"><a name="l00227"></a><span class="lineno"> 227</span>  <span class="comment">// Copy values</span></div><div class="line"><a name="l00228"></a><span class="lineno"> 228</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#ad9000ce99b9ffcec5722cade36d7e757">std::copy</a>(&matrix_values[0], &matrix_values[0] + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ae9d2dc29c2789c253406f9b304cc75a8">src</a>.num_elements(), &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ae9d2dc29c2789c253406f9b304cc75a8">src</a>[0]);</div><div class="line"><a name="l00229"></a><span class="lineno"> 229</span> }</div><div class="line"><a name="l00230"></a><span class="lineno"> 230</span> } <span class="comment">// namespace</span></div><div class="line"><a name="l00231"></a><span class="lineno"> 231</span> </div><div class="line"><a name="l00232"></a><span class="lineno"> 232</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div><div class="line"><a name="l00233"></a><span class="lineno"><a class="line" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a09a73d5705389176ff8b7f95946dbc2d"> 233</a></span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a09a73d5705389176ff8b7f95946dbc2d">winograd_input_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>)</div><div class="line"><a name="l00234"></a><span class="lineno"> 234</span> {</div><div class="line"><a name="l00235"></a><span class="lineno"> 235</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a5f63b63606dbbbe54474e6e970a6738c">data_layout</a>() != <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">DataLayout::NCHW</a>);</div><div class="line"><a name="l00236"></a><span class="lineno"> 236</span> </div><div class="line"><a name="l00237"></a><span class="lineno"> 237</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#acbf8f8a6dd185de04c1981c57a8963cf">conv_info</a> = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.convolution_info;</div><div class="line"><a name="l00238"></a><span class="lineno"> 238</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> output_tile_size = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.output_tile_size;</div><div class="line"><a name="l00239"></a><span class="lineno"> 239</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> kernel_size = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.kernel_size;</div><div class="line"><a name="l00240"></a><span class="lineno"> 240</span> </div><div class="line"><a name="l00241"></a><span class="lineno"> 241</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> out{ <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>() };</div><div class="line"><a name="l00242"></a><span class="lineno"> 242</span> </div><div class="line"><a name="l00243"></a><span class="lineno"> 243</span>  <span class="comment">// Calculate dimensions for the tile</span></div><div class="line"><a name="l00244"></a><span class="lineno"> 244</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> tile_w = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> + kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> - 1;</div><div class="line"><a name="l00245"></a><span class="lineno"> 245</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> tile_h = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a> + kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a> - 1;</div><div class="line"><a name="l00246"></a><span class="lineno"> 246</span> </div><div class="line"><a name="l00247"></a><span class="lineno"> 247</span>  <span class="comment">// Get the maximum dimension from the tile size</span></div><div class="line"><a name="l00248"></a><span class="lineno"> 248</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> tile_max_dim = std::max(tile_w, tile_h);</div><div class="line"><a name="l00249"></a><span class="lineno"> 249</span> </div><div class="line"><a name="l00250"></a><span class="lineno"> 250</span>  <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> tile_dims(tile_max_dim, tile_max_dim);</div><div class="line"><a name="l00251"></a><span class="lineno"> 251</span> </div><div class="line"><a name="l00252"></a><span class="lineno"> 252</span>  <span class="comment">// Simple tensor for the input tile</span></div><div class="line"><a name="l00253"></a><span class="lineno"> 253</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> src_tile{ tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>() };</div><div class="line"><a name="l00254"></a><span class="lineno"> 254</span> </div><div class="line"><a name="l00255"></a><span class="lineno"> 255</span>  <span class="comment">// Simple tensor for the temporary tile</span></div><div class="line"><a name="l00256"></a><span class="lineno"> 256</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> tmp_tile{ tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>() };</div><div class="line"><a name="l00257"></a><span class="lineno"> 257</span> </div><div class="line"><a name="l00258"></a><span class="lineno"> 258</span>  <span class="comment">// Simple tensor for the output tile</span></div><div class="line"><a name="l00259"></a><span class="lineno"> 259</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> dst_tile{ tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>() };</div><div class="line"><a name="l00260"></a><span class="lineno"> 260</span> </div><div class="line"><a name="l00261"></a><span class="lineno"> 261</span>  <span class="comment">// Simple tensor for the transformation matrix</span></div><div class="line"><a name="l00262"></a><span class="lineno"> 262</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> matrix{ tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>() };</div><div class="line"><a name="l00263"></a><span class="lineno"> 263</span> </div><div class="line"><a name="l00264"></a><span class="lineno"> 264</span>  <span class="comment">// Simple tensor for the transformation matrix transposed</span></div><div class="line"><a name="l00265"></a><span class="lineno"> 265</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> matrix_transposed{ tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>() };</div><div class="line"><a name="l00266"></a><span class="lineno"> 266</span> </div><div class="line"><a name="l00267"></a><span class="lineno"> 267</span>  <span class="comment">// Initialize matrix for the input transform</span></div><div class="line"><a name="l00268"></a><span class="lineno"> 268</span>  initialize_matrix_transform(matrix, output_tile_size, kernel_size, <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eaa84cc046d48610b05c21fd3670d0c829">WinogradTransformType::INPUT</a>);</div><div class="line"><a name="l00269"></a><span class="lineno"> 269</span> </div><div class="line"><a name="l00270"></a><span class="lineno"> 270</span>  <span class="comment">// Transpose matrix</span></div><div class="line"><a name="l00271"></a><span class="lineno"> 271</span>  transpose_matrix<T>(matrix, matrix_transposed);</div><div class="line"><a name="l00272"></a><span class="lineno"> 272</span> </div><div class="line"><a name="l00273"></a><span class="lineno"> 273</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> in_w = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>().x();</div><div class="line"><a name="l00274"></a><span class="lineno"> 274</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> in_h = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>().y();</div><div class="line"><a name="l00275"></a><span class="lineno"> 275</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> in_d = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>().z();</div><div class="line"><a name="l00276"></a><span class="lineno"> 276</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> out_d = out.shape().z();</div><div class="line"><a name="l00277"></a><span class="lineno"> 277</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_batches = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>().total_size() / (in_w * in_h * in_d);</div><div class="line"><a name="l00278"></a><span class="lineno"> 278</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> step_x = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a>;</div><div class="line"><a name="l00279"></a><span class="lineno"> 279</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> step_y = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a>;</div><div class="line"><a name="l00280"></a><span class="lineno"> 280</span> </div><div class="line"><a name="l00281"></a><span class="lineno"> 281</span>  <span class="comment">// Compute the number of output tiles along the x and y direction of size "output_tile_size"</span></div><div class="line"><a name="l00282"></a><span class="lineno"> 282</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> num_tiles = <a class="code" href="namespacearm__compute.xhtml#a3b0c016b53e97663b39c2f3875f46c24">compute_winograd_convolution_tiles</a>(<a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a>(in_w, in_h),</div><div class="line"><a name="l00283"></a><span class="lineno"> 283</span>  kernel_size,</div><div class="line"><a name="l00284"></a><span class="lineno"> 284</span>  output_tile_size,</div><div class="line"><a name="l00285"></a><span class="lineno"> 285</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#acbf8f8a6dd185de04c1981c57a8963cf">conv_info</a>);</div><div class="line"><a name="l00286"></a><span class="lineno"> 286</span> </div><div class="line"><a name="l00287"></a><span class="lineno"> 287</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_tiles_x = num_tiles.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a>;</div><div class="line"><a name="l00288"></a><span class="lineno"> 288</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_tiles_y = num_tiles.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a>;</div><div class="line"><a name="l00289"></a><span class="lineno"> 289</span> </div><div class="line"><a name="l00290"></a><span class="lineno"> 290</span>  <span class="comment">// In case of 1D convolution, the input tile has to be partially filled with zeros</span></div><div class="line"><a name="l00291"></a><span class="lineno"> 291</span>  <span class="keywordtype">int</span> start_x_zero = 0;</div><div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  <span class="keywordtype">int</span> start_y_zero = 0;</div><div class="line"><a name="l00293"></a><span class="lineno"> 293</span>  <span class="keywordtype">int</span> end_x_zero = 0;</div><div class="line"><a name="l00294"></a><span class="lineno"> 294</span>  <span class="keywordtype">int</span> end_y_zero = 0;</div><div class="line"><a name="l00295"></a><span class="lineno"> 295</span> </div><div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  <span class="keywordflow">if</span>(output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> == 1)</div><div class="line"><a name="l00297"></a><span class="lineno"> 297</span>  {</div><div class="line"><a name="l00298"></a><span class="lineno"> 298</span>  start_x_zero = 1;</div><div class="line"><a name="l00299"></a><span class="lineno"> 299</span>  start_y_zero = 0;</div><div class="line"><a name="l00300"></a><span class="lineno"> 300</span>  end_x_zero = tile_max_dim - 1;</div><div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  end_y_zero = tile_max_dim;</div><div class="line"><a name="l00302"></a><span class="lineno"> 302</span>  }</div><div class="line"><a name="l00303"></a><span class="lineno"> 303</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span>(output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a> == 1)</div><div class="line"><a name="l00304"></a><span class="lineno"> 304</span>  {</div><div class="line"><a name="l00305"></a><span class="lineno"> 305</span>  start_x_zero = 0;</div><div class="line"><a name="l00306"></a><span class="lineno"> 306</span>  start_y_zero = 1;</div><div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  end_x_zero = tile_max_dim;</div><div class="line"><a name="l00308"></a><span class="lineno"> 308</span>  end_y_zero = tile_max_dim - 1;</div><div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  }</div><div class="line"><a name="l00310"></a><span class="lineno"> 310</span> </div><div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  <span class="comment">// Set the anchor and shape of the zeros area</span></div><div class="line"><a name="l00312"></a><span class="lineno"> 312</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> anchor_zeros(start_x_zero, start_y_zero);</div><div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> shape_zeros(end_x_zero, end_y_zero);</div><div class="line"><a name="l00314"></a><span class="lineno"> 314</span> </div><div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  <span class="comment">// If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step = width of the output tile)</span></div><div class="line"><a name="l00316"></a><span class="lineno"> 316</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> step_y_transf_tile = kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> == 1 ? tile_max_dim : 1;</div><div class="line"><a name="l00317"></a><span class="lineno"> 317</span> </div><div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>((num_tiles_x * num_tiles_y) != static_cast<int>(out.shape().y()));</div><div class="line"><a name="l00319"></a><span class="lineno"> 319</span> </div><div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> b = 0; b < num_batches; ++b)</div><div class="line"><a name="l00321"></a><span class="lineno"> 321</span>  {</div><div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> z = 0; z < in_d; ++z)</div><div class="line"><a name="l00323"></a><span class="lineno"> 323</span>  {</div><div class="line"><a name="l00324"></a><span class="lineno"> 324</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> y = 0; y < num_tiles_y; ++y)</div><div class="line"><a name="l00325"></a><span class="lineno"> 325</span>  {</div><div class="line"><a name="l00326"></a><span class="lineno"> 326</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> x = 0; x < num_tiles_x; ++x)</div><div class="line"><a name="l00327"></a><span class="lineno"> 327</span>  {</div><div class="line"><a name="l00328"></a><span class="lineno"> 328</span>  <span class="keywordtype">int</span> xi = x * step_x - <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#acbf8f8a6dd185de04c1981c57a8963cf">conv_info</a>.pad_left();</div><div class="line"><a name="l00329"></a><span class="lineno"> 329</span>  <span class="keywordtype">int</span> yi = y * step_y - <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#acbf8f8a6dd185de04c1981c57a8963cf">conv_info</a>.pad_top();</div><div class="line"><a name="l00330"></a><span class="lineno"> 330</span> </div><div class="line"><a name="l00331"></a><span class="lineno"> 331</span>  <span class="comment">// Get the tile from the input tensor</span></div><div class="line"><a name="l00332"></a><span class="lineno"> 332</span>  get_tile<T>(in, src_tile, <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a>(xi, yi, z, b));</div><div class="line"><a name="l00333"></a><span class="lineno"> 333</span> </div><div class="line"><a name="l00334"></a><span class="lineno"> 334</span>  <span class="comment">// Fill partially with zeros in case of 1D convolution</span></div><div class="line"><a name="l00335"></a><span class="lineno"> 335</span>  zeros<T>(src_tile, anchor_zeros, shape_zeros);</div><div class="line"><a name="l00336"></a><span class="lineno"> 336</span> </div><div class="line"><a name="l00337"></a><span class="lineno"> 337</span>  <span class="comment">// Compute the transformation</span></div><div class="line"><a name="l00338"></a><span class="lineno"> 338</span>  matrix_multiply<T>(matrix, src_tile, tmp_tile);</div><div class="line"><a name="l00339"></a><span class="lineno"> 339</span>  matrix_multiply<T>(tmp_tile, matrix_transposed, dst_tile);</div><div class="line"><a name="l00340"></a><span class="lineno"> 340</span> </div><div class="line"><a name="l00341"></a><span class="lineno"> 341</span>  <span class="comment">// Store the output tile across the channels</span></div><div class="line"><a name="l00342"></a><span class="lineno"> 342</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i = 0; i < out_d; ++i)</div><div class="line"><a name="l00343"></a><span class="lineno"> 343</span>  {</div><div class="line"><a name="l00344"></a><span class="lineno"> 344</span>  <span class="keywordtype">int</span> xo = z;</div><div class="line"><a name="l00345"></a><span class="lineno"> 345</span>  <span class="keywordtype">int</span> yo = x + y * num_tiles_x;</div><div class="line"><a name="l00346"></a><span class="lineno"> 346</span>  out[<a class="code" href="namespacearm__compute.xhtml#ad95e1c14c3007ca18950bf8f4c5a5c93">coords2index</a>(out.shape(), <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a>(xo, yo, i, b))] = dst_tile[i * step_y_transf_tile];</div><div class="line"><a name="l00347"></a><span class="lineno"> 347</span>  }</div><div class="line"><a name="l00348"></a><span class="lineno"> 348</span>  }</div><div class="line"><a name="l00349"></a><span class="lineno"> 349</span>  }</div><div class="line"><a name="l00350"></a><span class="lineno"> 350</span>  }</div><div class="line"><a name="l00351"></a><span class="lineno"> 351</span>  }</div><div class="line"><a name="l00352"></a><span class="lineno"> 352</span> </div><div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  <span class="keywordflow">return</span> out;</div><div class="line"><a name="l00354"></a><span class="lineno"> 354</span> }</div><div class="line"><a name="l00355"></a><span class="lineno"> 355</span> </div><div class="line"><a name="l00356"></a><span class="lineno"> 356</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div><div class="line"><a name="l00357"></a><span class="lineno"><a class="line" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#ae1720f2a51d1415a9c5afbf2a5c2749f"> 357</a></span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#ae1720f2a51d1415a9c5afbf2a5c2749f">winograd_filter_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>)</div><div class="line"><a name="l00358"></a><span class="lineno"> 358</span> {</div><div class="line"><a name="l00359"></a><span class="lineno"> 359</span>  <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a5f63b63606dbbbe54474e6e970a6738c">data_layout</a>() != <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">DataLayout::NCHW</a>, <span class="stringliteral">"Only supported NCHW data format"</span>);</div><div class="line"><a name="l00360"></a><span class="lineno"> 360</span> </div><div class="line"><a name="l00361"></a><span class="lineno"> 361</span>  <span class="comment">// Create reference</span></div><div class="line"><a name="l00362"></a><span class="lineno"> 362</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> out{ <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00363"></a><span class="lineno"> 363</span> </div><div class="line"><a name="l00364"></a><span class="lineno"> 364</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> output_tile_size = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.output_tile_size;</div><div class="line"><a name="l00365"></a><span class="lineno"> 365</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> kernel_size = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.kernel_size;</div><div class="line"><a name="l00366"></a><span class="lineno"> 366</span> </div><div class="line"><a name="l00367"></a><span class="lineno"> 367</span>  <span class="comment">// Calculate dimensions for the tile</span></div><div class="line"><a name="l00368"></a><span class="lineno"> 368</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> input_tile_w = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> + kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> - 1;</div><div class="line"><a name="l00369"></a><span class="lineno"> 369</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> input_tile_h = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a> + kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a> - 1;</div><div class="line"><a name="l00370"></a><span class="lineno"> 370</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> input_tile_area = input_tile_w * input_tile_h;</div><div class="line"><a name="l00371"></a><span class="lineno"> 371</span> </div><div class="line"><a name="l00372"></a><span class="lineno"> 372</span>  <span class="comment">// Get the maximum dimension from the filter size</span></div><div class="line"><a name="l00373"></a><span class="lineno"> 373</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> kernel_max_dim = std::max(kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a>, kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a>);</div><div class="line"><a name="l00374"></a><span class="lineno"> 374</span> </div><div class="line"><a name="l00375"></a><span class="lineno"> 375</span>  <span class="comment">// Get the maximum dimension from the input tile</span></div><div class="line"><a name="l00376"></a><span class="lineno"> 376</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> input_tile_max_dim = std::max(input_tile_w, input_tile_h);</div><div class="line"><a name="l00377"></a><span class="lineno"> 377</span> </div><div class="line"><a name="l00378"></a><span class="lineno"> 378</span>  <span class="comment">// Simple tensor for the input tile</span></div><div class="line"><a name="l00379"></a><span class="lineno"> 379</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> input_tile{ <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(kernel_max_dim, kernel_max_dim), in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00380"></a><span class="lineno"> 380</span> </div><div class="line"><a name="l00381"></a><span class="lineno"> 381</span>  <span class="comment">// Simple tensor for the transformation matrix</span></div><div class="line"><a name="l00382"></a><span class="lineno"> 382</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> trans_matrix{ <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(kernel_max_dim, input_tile_max_dim), in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00383"></a><span class="lineno"> 383</span> </div><div class="line"><a name="l00384"></a><span class="lineno"> 384</span>  <span class="comment">// Simple tensor for the transformation matrix transpose</span></div><div class="line"><a name="l00385"></a><span class="lineno"> 385</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> trans_matrix_transposed{ <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(input_tile_max_dim, kernel_max_dim), in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00386"></a><span class="lineno"> 386</span> </div><div class="line"><a name="l00387"></a><span class="lineno"> 387</span>  <span class="comment">// Simple tensor for the temporary tile</span></div><div class="line"><a name="l00388"></a><span class="lineno"> 388</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> tmp_tile{ <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(kernel_max_dim, input_tile_max_dim), in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00389"></a><span class="lineno"> 389</span> </div><div class="line"><a name="l00390"></a><span class="lineno"> 390</span>  <span class="comment">// Simple tensor for the output tile</span></div><div class="line"><a name="l00391"></a><span class="lineno"> 391</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> transf_tile{ <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(input_tile_max_dim, input_tile_max_dim), in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00392"></a><span class="lineno"> 392</span> </div><div class="line"><a name="l00393"></a><span class="lineno"> 393</span>  <span class="comment">// Initialize matrix for the filter transform</span></div><div class="line"><a name="l00394"></a><span class="lineno"> 394</span>  initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871eae75ab17a550f46adbbe891b819cf951d">WinogradTransformType::FILTER</a>);</div><div class="line"><a name="l00395"></a><span class="lineno"> 395</span> </div><div class="line"><a name="l00396"></a><span class="lineno"> 396</span>  <span class="comment">// Transpose the transformation matrix</span></div><div class="line"><a name="l00397"></a><span class="lineno"> 397</span>  transpose_matrix<T>(trans_matrix, trans_matrix_transposed);</div><div class="line"><a name="l00398"></a><span class="lineno"> 398</span> </div><div class="line"><a name="l00399"></a><span class="lineno"> 399</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_channels = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[2];</div><div class="line"><a name="l00400"></a><span class="lineno"> 400</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_filters = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[3];</div><div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_batches = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>().total_size() / (kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a75026dc1fa3840404ae4553010efcd52">area</a>() * num_channels * num_filters);</div><div class="line"><a name="l00402"></a><span class="lineno"> 402</span> </div><div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  <span class="comment">// If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step_y_transf_tile = width of the output tile)</span></div><div class="line"><a name="l00404"></a><span class="lineno"> 404</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> step_y_transf_tile = kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> == 1 ? input_tile_max_dim : 1;</div><div class="line"><a name="l00405"></a><span class="lineno"> 405</span> </div><div class="line"><a name="l00406"></a><span class="lineno"> 406</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> n = 0; n < num_batches; ++n)</div><div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  {</div><div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> w = 0; w < num_filters; ++w)</div><div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  {</div><div class="line"><a name="l00410"></a><span class="lineno"> 410</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> z = 0; z < num_channels; ++z)</div><div class="line"><a name="l00411"></a><span class="lineno"> 411</span>  {</div><div class="line"><a name="l00412"></a><span class="lineno"> 412</span>  <span class="comment">// Load the tile from the input tensor</span></div><div class="line"><a name="l00413"></a><span class="lineno"> 413</span>  get_tile<T>(in, input_tile, <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a>(0, 0, z, w, n));</div><div class="line"><a name="l00414"></a><span class="lineno"> 414</span> </div><div class="line"><a name="l00415"></a><span class="lineno"> 415</span>  <span class="comment">// First transformation</span></div><div class="line"><a name="l00416"></a><span class="lineno"> 416</span>  matrix_multiply<T>(trans_matrix, input_tile, tmp_tile);</div><div class="line"><a name="l00417"></a><span class="lineno"> 417</span> </div><div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  <span class="comment">// Second transformation</span></div><div class="line"><a name="l00419"></a><span class="lineno"> 419</span>  matrix_multiply<T>(tmp_tile, trans_matrix_transposed, transf_tile);</div><div class="line"><a name="l00420"></a><span class="lineno"> 420</span> </div><div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  <span class="comment">// Store the output tile across the channels</span></div><div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> output_offset = w + z * num_filters;</div><div class="line"><a name="l00423"></a><span class="lineno"> 423</span> </div><div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  <span class="comment">// Store the values across the channels</span></div><div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 0; i < input_tile_area; ++i)</div><div class="line"><a name="l00426"></a><span class="lineno"> 426</span>  {</div><div class="line"><a name="l00427"></a><span class="lineno"> 427</span>  out[output_offset + i * num_filters * num_channels] = transf_tile[i * step_y_transf_tile];</div><div class="line"><a name="l00428"></a><span class="lineno"> 428</span>  }</div><div class="line"><a name="l00429"></a><span class="lineno"> 429</span>  }</div><div class="line"><a name="l00430"></a><span class="lineno"> 430</span>  }</div><div class="line"><a name="l00431"></a><span class="lineno"> 431</span>  }</div><div class="line"><a name="l00432"></a><span class="lineno"> 432</span> </div><div class="line"><a name="l00433"></a><span class="lineno"> 433</span>  <span class="keywordflow">return</span> out;</div><div class="line"><a name="l00434"></a><span class="lineno"> 434</span> }</div><div class="line"><a name="l00435"></a><span class="lineno"> 435</span> </div><div class="line"><a name="l00436"></a><span class="lineno"> 436</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div><div class="line"><a name="l00437"></a><span class="lineno"><a class="line" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#adacc73fb5c03e7a1273c0c81c8f8dad5"> 437</a></span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#adacc73fb5c03e7a1273c0c81c8f8dad5">winograd_output_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> &b, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>)</div><div class="line"><a name="l00438"></a><span class="lineno"> 438</span> {</div><div class="line"><a name="l00439"></a><span class="lineno"> 439</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#acbf8f8a6dd185de04c1981c57a8963cf">conv_info</a> = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.convolution_info;</div><div class="line"><a name="l00440"></a><span class="lineno"> 440</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> input_dimensions = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.input_dimensions;</div><div class="line"><a name="l00441"></a><span class="lineno"> 441</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> output_tile_size = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.output_tile_size;</div><div class="line"><a name="l00442"></a><span class="lineno"> 442</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> kernel_size = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.kernel_size;</div><div class="line"><a name="l00443"></a><span class="lineno"> 443</span> </div><div class="line"><a name="l00444"></a><span class="lineno"> 444</span>  <span class="comment">// Create reference</span></div><div class="line"><a name="l00445"></a><span class="lineno"> 445</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> out{ <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00446"></a><span class="lineno"> 446</span> </div><div class="line"><a name="l00447"></a><span class="lineno"> 447</span>  <span class="comment">// Calculate dimensions for the tiles</span></div><div class="line"><a name="l00448"></a><span class="lineno"> 448</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> in_tile_w = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> + kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> - 1;</div><div class="line"><a name="l00449"></a><span class="lineno"> 449</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> in_tile_h = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a> + kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a> - 1;</div><div class="line"><a name="l00450"></a><span class="lineno"> 450</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> out_tile_w = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a>;</div><div class="line"><a name="l00451"></a><span class="lineno"> 451</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> out_tile_h = output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a>;</div><div class="line"><a name="l00452"></a><span class="lineno"> 452</span> </div><div class="line"><a name="l00453"></a><span class="lineno"> 453</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[2] != (in_tile_w * in_tile_h));</div><div class="line"><a name="l00454"></a><span class="lineno"> 454</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[0] != out.shape()[<a class="code" href="namespacearm__compute.xhtml#a46e938020a3ac8c926d0590b7fe957db">get_data_layout_dimension_index</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>.output_data_layout, <a class="code" href="namespacearm__compute.xhtml#a74ce3f7420453d3446218ff3b7453e02af52e9c50a060add65a035429b2a22229">DataLayoutDimension::CHANNEL</a>)]);</div><div class="line"><a name="l00455"></a><span class="lineno"> 455</span> </div><div class="line"><a name="l00456"></a><span class="lineno"> 456</span>  <span class="comment">// Get the maximum dimension from the tile size</span></div><div class="line"><a name="l00457"></a><span class="lineno"> 457</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> in_tile_max_dim = std::max(in_tile_w, in_tile_h);</div><div class="line"><a name="l00458"></a><span class="lineno"> 458</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> out_tile_max_dim = std::max(output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a>, output_tile_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a>);</div><div class="line"><a name="l00459"></a><span class="lineno"> 459</span> </div><div class="line"><a name="l00460"></a><span class="lineno"> 460</span>  <span class="comment">// Compute tile dimensions</span></div><div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  <span class="comment">// Input tile dimensions</span></div><div class="line"><a name="l00462"></a><span class="lineno"> 462</span>  <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> in_tile_dims(in_tile_max_dim, in_tile_max_dim);</div><div class="line"><a name="l00463"></a><span class="lineno"> 463</span> </div><div class="line"><a name="l00464"></a><span class="lineno"> 464</span>  <span class="comment">// Output tile dimensions</span></div><div class="line"><a name="l00465"></a><span class="lineno"> 465</span>  <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_tile_dims(out_tile_max_dim, out_tile_max_dim);</div><div class="line"><a name="l00466"></a><span class="lineno"> 466</span> </div><div class="line"><a name="l00467"></a><span class="lineno"> 467</span>  <span class="comment">// Transformation matrix dimensions</span></div><div class="line"><a name="l00468"></a><span class="lineno"> 468</span>  <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> tr_tile_dims(in_tile_max_dim, out_tile_max_dim);</div><div class="line"><a name="l00469"></a><span class="lineno"> 469</span> </div><div class="line"><a name="l00470"></a><span class="lineno"> 470</span>  <span class="comment">// Create tensors</span></div><div class="line"><a name="l00471"></a><span class="lineno"> 471</span>  <span class="comment">// Simple tensor for the input tile</span></div><div class="line"><a name="l00472"></a><span class="lineno"> 472</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> input_tile{ in_tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00473"></a><span class="lineno"> 473</span> </div><div class="line"><a name="l00474"></a><span class="lineno"> 474</span>  <span class="comment">// Simple tensor for the transformation matrix</span></div><div class="line"><a name="l00475"></a><span class="lineno"> 475</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> trans_matrix{ tr_tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00476"></a><span class="lineno"> 476</span> </div><div class="line"><a name="l00477"></a><span class="lineno"> 477</span>  <span class="comment">// Simple tensor for the transformation matrix transpose</span></div><div class="line"><a name="l00478"></a><span class="lineno"> 478</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> trans_matrix_transposed{ <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(tr_tile_dims[1], tr_tile_dims[0]), in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00479"></a><span class="lineno"> 479</span> </div><div class="line"><a name="l00480"></a><span class="lineno"> 480</span>  <span class="comment">// Simple tensor for the temporary tile</span></div><div class="line"><a name="l00481"></a><span class="lineno"> 481</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> tmp_tile{ tr_tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00482"></a><span class="lineno"> 482</span> </div><div class="line"><a name="l00483"></a><span class="lineno"> 483</span>  <span class="comment">// Simple tensor for the output tile</span></div><div class="line"><a name="l00484"></a><span class="lineno"> 484</span>  <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<T></a> output_tile{ out_tile_dims, in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#a9a3e72153aeb3ed212e9c3698774e881">data_type</a>(), 1 };</div><div class="line"><a name="l00485"></a><span class="lineno"> 485</span> </div><div class="line"><a name="l00486"></a><span class="lineno"> 486</span>  <span class="comment">// Initialize matrix for the output transform</span></div><div class="line"><a name="l00487"></a><span class="lineno"> 487</span>  initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a5d19c046f7c6ca24d067312183e8871ea50a87f0d71f7221582dad4bf507a0f34">WinogradTransformType::OUTPUT</a>);</div><div class="line"><a name="l00488"></a><span class="lineno"> 488</span> </div><div class="line"><a name="l00489"></a><span class="lineno"> 489</span>  <span class="comment">// Transpose the transformation matrix</span></div><div class="line"><a name="l00490"></a><span class="lineno"> 490</span>  transpose_matrix<T>(trans_matrix, trans_matrix_transposed);</div><div class="line"><a name="l00491"></a><span class="lineno"> 491</span> </div><div class="line"><a name="l00492"></a><span class="lineno"> 492</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> w_in = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[0];</div><div class="line"><a name="l00493"></a><span class="lineno"> 493</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> h_in = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[1];</div><div class="line"><a name="l00494"></a><span class="lineno"> 494</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> c_in = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[2];</div><div class="line"><a name="l00495"></a><span class="lineno"> 495</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> w_out = out.shape()[0];</div><div class="line"><a name="l00496"></a><span class="lineno"> 496</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> h_out = out.shape()[1];</div><div class="line"><a name="l00497"></a><span class="lineno"> 497</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> c_out = out.shape()[2];</div><div class="line"><a name="l00498"></a><span class="lineno"> 498</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_batches = in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>().total_size() / (w_in * h_in * c_in);</div><div class="line"><a name="l00499"></a><span class="lineno"> 499</span> </div><div class="line"><a name="l00500"></a><span class="lineno"> 500</span>  <span class="comment">// Input strides</span></div><div class="line"><a name="l00501"></a><span class="lineno"> 501</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> stridey_in = w_in;</div><div class="line"><a name="l00502"></a><span class="lineno"> 502</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> stridez_in = stridey_in * h_in;</div><div class="line"><a name="l00503"></a><span class="lineno"> 503</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> stridew_in = stridez_in * c_in;</div><div class="line"><a name="l00504"></a><span class="lineno"> 504</span> </div><div class="line"><a name="l00505"></a><span class="lineno"> 505</span>  <span class="comment">// Output strides</span></div><div class="line"><a name="l00506"></a><span class="lineno"> 506</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> stridey_out = w_out;</div><div class="line"><a name="l00507"></a><span class="lineno"> 507</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> stridez_out = stridey_out * h_out;</div><div class="line"><a name="l00508"></a><span class="lineno"> 508</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> stridew_out = stridez_out * c_out;</div><div class="line"><a name="l00509"></a><span class="lineno"> 509</span> </div><div class="line"><a name="l00510"></a><span class="lineno"> 510</span>  <span class="comment">// Compute the number of output tiles along the x and y direction of size "output_tile_size"</span></div><div class="line"><a name="l00511"></a><span class="lineno"> 511</span>  <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a> num_tiles = <a class="code" href="namespacearm__compute.xhtml#a3b0c016b53e97663b39c2f3875f46c24">compute_winograd_convolution_tiles</a>(<a class="code" href="classarm__compute_1_1_size2_d.xhtml">Size2D</a>(input_dimensions.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a>, input_dimensions.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a>),</div><div class="line"><a name="l00512"></a><span class="lineno"> 512</span>  kernel_size,</div><div class="line"><a name="l00513"></a><span class="lineno"> 513</span>  output_tile_size,</div><div class="line"><a name="l00514"></a><span class="lineno"> 514</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#acbf8f8a6dd185de04c1981c57a8963cf">conv_info</a>);</div><div class="line"><a name="l00515"></a><span class="lineno"> 515</span> </div><div class="line"><a name="l00516"></a><span class="lineno"> 516</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_tiles_x = num_tiles.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a>;</div><div class="line"><a name="l00517"></a><span class="lineno"> 517</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> num_tiles_y = num_tiles.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02afeaaf8574e7a78d6b466ff2695052">height</a>;</div><div class="line"><a name="l00518"></a><span class="lineno"> 518</span> </div><div class="line"><a name="l00519"></a><span class="lineno"> 519</span>  <a class="code" href="_error_8h.xhtml#a6dc630a6ae9cc063b3924bcea8dee9d6">ARM_COMPUTE_UNUSED</a>(num_tiles_y);</div><div class="line"><a name="l00520"></a><span class="lineno"> 520</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(in.<a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#aba5871b3e4a65d057ec1c28fce8b00ba">shape</a>()[1] != static_cast<unsigned int>(num_tiles_x * num_tiles_y));</div><div class="line"><a name="l00521"></a><span class="lineno"> 521</span> </div><div class="line"><a name="l00522"></a><span class="lineno"> 522</span>  <span class="comment">// If we have a vertical filter (i.e. 1x3, 1x5,..), we still need to take the elements along the x direction (step_y_transf_tile = 1)</span></div><div class="line"><a name="l00523"></a><span class="lineno"> 523</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> step_y_transf_tile = kernel_size.<a class="code" href="classarm__compute_1_1_size2_d.xhtml#a02bed8590a9ddf520e58a060059518ec">width</a> == 1 ? 1 : output_tile.shape()[0];</div><div class="line"><a name="l00524"></a><span class="lineno"> 524</span> </div><div class="line"><a name="l00525"></a><span class="lineno"> 525</span>  <span class="comment">// Initialize with zeros the input tile</span></div><div class="line"><a name="l00526"></a><span class="lineno"> 526</span>  zeros<T>(input_tile, <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a>(0, 0), input_tile.shape());</div><div class="line"><a name="l00527"></a><span class="lineno"> 527</span> </div><div class="line"><a name="l00528"></a><span class="lineno"> 528</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> n = 0; n < num_batches; ++n)</div><div class="line"><a name="l00529"></a><span class="lineno"> 529</span>  {</div><div class="line"><a name="l00530"></a><span class="lineno"> 530</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> y = 0; y < h_in; ++y)</div><div class="line"><a name="l00531"></a><span class="lineno"> 531</span>  {</div><div class="line"><a name="l00532"></a><span class="lineno"> 532</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> x = 0; x < w_in; ++x)</div><div class="line"><a name="l00533"></a><span class="lineno"> 533</span>  {</div><div class="line"><a name="l00534"></a><span class="lineno"> 534</span>  <span class="comment">// Load the input tile tile across the channels of the input tensor</span></div><div class="line"><a name="l00535"></a><span class="lineno"> 535</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> z = 0; z < c_in; ++z)</div><div class="line"><a name="l00536"></a><span class="lineno"> 536</span>  {</div><div class="line"><a name="l00537"></a><span class="lineno"> 537</span>  input_tile[z] = in[x + (y * stridey_in) + (z * stridez_in) + (n * stridew_in)];</div><div class="line"><a name="l00538"></a><span class="lineno"> 538</span>  }</div><div class="line"><a name="l00539"></a><span class="lineno"> 539</span> </div><div class="line"><a name="l00540"></a><span class="lineno"> 540</span>  <span class="comment">// First transformation</span></div><div class="line"><a name="l00541"></a><span class="lineno"> 541</span>  matrix_multiply<T>(trans_matrix, input_tile, tmp_tile);</div><div class="line"><a name="l00542"></a><span class="lineno"> 542</span> </div><div class="line"><a name="l00543"></a><span class="lineno"> 543</span>  <span class="comment">// Second transformation</span></div><div class="line"><a name="l00544"></a><span class="lineno"> 544</span>  matrix_multiply<T>(tmp_tile, trans_matrix_transposed, output_tile);</div><div class="line"><a name="l00545"></a><span class="lineno"> 545</span> </div><div class="line"><a name="l00546"></a><span class="lineno"> 546</span>  <span class="comment">// Store the output tile</span></div><div class="line"><a name="l00547"></a><span class="lineno"> 547</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> xo = (y % num_tiles_x) * out_tile_w;</div><div class="line"><a name="l00548"></a><span class="lineno"> 548</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> yo = (y / num_tiles_x) * out_tile_h;</div><div class="line"><a name="l00549"></a><span class="lineno"> 549</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> zo = x;</div><div class="line"><a name="l00550"></a><span class="lineno"> 550</span> </div><div class="line"><a name="l00551"></a><span class="lineno"> 551</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> output_offset = xo + (yo * stridey_out) + (zo * stridez_out) + (n * stridew_out);</div><div class="line"><a name="l00552"></a><span class="lineno"> 552</span> </div><div class="line"><a name="l00553"></a><span class="lineno"> 553</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> yi = 0; yi < static_cast<int>(out_tile_h); ++yi)</div><div class="line"><a name="l00554"></a><span class="lineno"> 554</span>  {</div><div class="line"><a name="l00555"></a><span class="lineno"> 555</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> xi = 0; xi < static_cast<int>(out_tile_w); ++xi)</div><div class="line"><a name="l00556"></a><span class="lineno"> 556</span>  {</div><div class="line"><a name="l00557"></a><span class="lineno"> 557</span>  <span class="comment">// Check out-of-bound writes</span></div><div class="line"><a name="l00558"></a><span class="lineno"> 558</span>  <span class="keywordflow">if</span>((xo + xi < w_out) && (yo + yi < h_out))</div><div class="line"><a name="l00559"></a><span class="lineno"> 559</span>  {</div><div class="line"><a name="l00560"></a><span class="lineno"> 560</span>  out[output_offset + yi * stridey_out + xi] = output_tile[xi + yi * step_y_transf_tile];</div><div class="line"><a name="l00561"></a><span class="lineno"> 561</span> </div><div class="line"><a name="l00562"></a><span class="lineno"> 562</span>  <span class="comment">// Add bias</span></div><div class="line"><a name="l00563"></a><span class="lineno"> 563</span>  out[output_offset + yi * stridey_out + xi] += b[zo];</div><div class="line"><a name="l00564"></a><span class="lineno"> 564</span>  }</div><div class="line"><a name="l00565"></a><span class="lineno"> 565</span>  }</div><div class="line"><a name="l00566"></a><span class="lineno"> 566</span>  }</div><div class="line"><a name="l00567"></a><span class="lineno"> 567</span>  }</div><div class="line"><a name="l00568"></a><span class="lineno"> 568</span>  }</div><div class="line"><a name="l00569"></a><span class="lineno"> 569</span>  }</div><div class="line"><a name="l00570"></a><span class="lineno"> 570</span> </div><div class="line"><a name="l00571"></a><span class="lineno"> 571</span>  <span class="keywordflow">return</span> out;</div><div class="line"><a name="l00572"></a><span class="lineno"> 572</span> }</div><div class="line"><a name="l00573"></a><span class="lineno"> 573</span> </div><div class="line"><a name="l00574"></a><span class="lineno"> 574</span> <span class="keyword">template</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<float></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#ae1720f2a51d1415a9c5afbf2a5c2749f">winograd_filter_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<float></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>);</div><div class="line"><a name="l00575"></a><span class="lineno"> 575</span> <span class="keyword">template</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<float></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a09a73d5705389176ff8b7f95946dbc2d">winograd_input_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<float></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>);</div><div class="line"><a name="l00576"></a><span class="lineno"> 576</span> <span class="keyword">template</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<float></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#adacc73fb5c03e7a1273c0c81c8f8dad5">winograd_output_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<float></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<float></a> &b, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>);</div><div class="line"><a name="l00577"></a><span class="lineno"> 577</span> <span class="keyword">template</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<half></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#ae1720f2a51d1415a9c5afbf2a5c2749f">winograd_filter_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<half></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>);</div><div class="line"><a name="l00578"></a><span class="lineno"> 578</span> <span class="keyword">template</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<half></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a09a73d5705389176ff8b7f95946dbc2d">winograd_input_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<half></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>);</div><div class="line"><a name="l00579"></a><span class="lineno"> 579</span> <span class="keyword">template</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<half></a> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#adacc73fb5c03e7a1273c0c81c8f8dad5">winograd_output_transform</a>(<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<half></a> &in, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor<half></a> &b, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a7fc93f37dac131a1a40b7921f9df3a9a">output_shape</a>, <span class="keyword">const</span> <a class="code" href="structarm__compute_1_1_winograd_info.xhtml">WinogradInfo</a> &<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a809d18ccde99d938a68cb90ef53aa749">winograd_info</a>);</div><div class="line"><a name="l00580"></a><span class="lineno"> 580</span> </div><div class="line"><a name="l00581"></a><span class="lineno"> 581</span> } <span class="comment">// namespace reference</span></div><div class="line"><a name="l00582"></a><span class="lineno"> 582</span> } <span class="comment">// namespace validation</span></div><div class="line"><a name="l00583"></a><span class="lineno"> 583</span> } <span class="comment">// namespace test</span></div><div class="line"><a name="l00584"></a><span class="lineno"> 584</span> } <span class="comment">// namespace arm_compute</span></div><div class="ttc" id="_error_8h_xhtml_a05b19c75afe9c24200a62b9724734bbd"><div class="ttname"><a href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR(...)</div><div class="ttdoc">Print the given message then throw an std::runtime_error.</div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00261">Error.h:261</a></div></div> |