| /* | 
 |  * Copyright (c) 2019-2020 Arm Limited. | 
 |  * | 
 |  * SPDX-License-Identifier: MIT | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a copy | 
 |  * of this software and associated documentation files (the "Software"), to | 
 |  * deal in the Software without restriction, including without limitation the | 
 |  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | 
 |  * sell copies of the Software, and to permit persons to whom the Software is | 
 |  * furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice shall be included in all | 
 |  * copies or substantial portions of the Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
 |  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 |  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  */ | 
 | #include "arm_compute/runtime/CL/functions/CLCropResize.h" | 
 |  | 
 | #include "arm_compute/core/CL/CLHelpers.h" | 
 | #include "arm_compute/runtime/CL/CLScheduler.h" | 
 | #include "src/core/CL/kernels/CLCopyKernel.h" | 
 | #include "src/core/CL/kernels/CLCropKernel.h" | 
 | #include "src/core/CL/kernels/CLFillBorderKernel.h" | 
 | #include "src/core/CL/kernels/CLMemsetKernel.h" | 
 | #include "src/core/helpers/AutoConfiguration.h" | 
 | #include "src/core/helpers/WindowHelpers.h" | 
 |  | 
 | #include "support/MemorySupport.h" | 
 |  | 
 | #include <cstddef> | 
 |  | 
 | namespace arm_compute | 
 | { | 
 | namespace | 
 | { | 
 | inline void configure_crop(const ICLTensor *input, ICLTensor *crop_boxes, ICLTensor *box_ind, ICLTensor *output, uint32_t crop_box_ind, Coordinates &start, Coordinates &end, uint32_t &batch_index) | 
 | { | 
 |     batch_index = *(reinterpret_cast<int32_t *>(box_ind->ptr_to_element(Coordinates(crop_box_ind)))); | 
 |  | 
 |     // _crop_box_ind is used to index crop_boxes and retrieve the appropriate crop box. | 
 |     // The crop box is specified by normalized coordinates [y0, x0, y1, x1]. | 
 |     const float x0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(1, crop_box_ind))); | 
 |     const float y0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(0, crop_box_ind))); | 
 |     const float x1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(3, crop_box_ind))); | 
 |     const float y1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(2, crop_box_ind))); | 
 |     // The normalized coordinates are scaled to retrieve the floating point image coordinates which are rounded to integers. | 
 |     start = Coordinates(std::floor(x0 * (input->info()->tensor_shape()[1] - 1) + 0.5f), | 
 |                         std::floor(y0 * (input->info()->tensor_shape()[2] - 1) + 0.5f)); | 
 |     end = Coordinates(std::floor(x1 * (input->info()->tensor_shape()[1] - 1) + 0.5f), | 
 |                       std::floor(y1 * (input->info()->tensor_shape()[2] - 1) + 0.5f)); | 
 |     const TensorShape out_shape(input->info()->tensor_shape()[0], static_cast<uint32_t>(abs(end[0] - start[0])) + 1, static_cast<uint32_t>(abs(end[1] - start[1])) + 1); | 
 |     output->info()->set_tensor_shape(out_shape); | 
 | } | 
 | } // namespace | 
 |  | 
 | CLCropResize::CLCropResize() | 
 |     : _input(nullptr), _boxes(nullptr), _box_ind(nullptr), _output(nullptr), _num_boxes(0), _method(), _extrapolation_value(0), _scale(), _copy(), _crop_results(), _scaled_results(), _internal_kernels() | 
 | { | 
 | } | 
 |  | 
 | CLCropResize::~CLCropResize() = default; | 
 |  | 
 | Status CLCropResize::validate(const ITensorInfo *input, ITensorInfo *boxes, ITensorInfo *box_ind, const ITensorInfo *output, | 
 |                               Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value) | 
 | { | 
 |     ARM_COMPUTE_RETURN_ERROR_ON(crop_size.x <= 0 || crop_size.y <= 0); | 
 |     ARM_COMPUTE_RETURN_ERROR_ON(method == InterpolationPolicy::AREA); | 
 |     ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[0] != 4); | 
 |     ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[1] != box_ind->tensor_shape()[0]); | 
 |     TensorInfo temp_info; | 
 |     ARM_COMPUTE_RETURN_ON_ERROR(CLCropKernel::validate(input->clone().get(), &temp_info, { 0, 0 }, { 1, 1 }, input->dimension(3) - 1, extrapolation_value)); | 
 |     if(output->total_size() > 0) | 
 |     { | 
 |         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::F32); | 
 |         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); | 
 |         TensorShape out_shape(input->tensor_shape()[0], crop_size.x, crop_size.y, boxes->tensor_shape()[1]); | 
 |         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), out_shape); | 
 |     } | 
 |     return Status{}; | 
 | } | 
 |  | 
 | void CLCropResize::configure(const ICLTensor *input, ICLTensor *boxes, ICLTensor *box_ind, ICLTensor *output, Coordinates2D crop_size, | 
 |                              InterpolationPolicy method, float extrapolation_value) | 
 | { | 
 |     configure(CLKernelLibrary::get().get_compile_context(), input, boxes, box_ind, output, crop_size, method, extrapolation_value); | 
 | } | 
 |  | 
 | void CLCropResize::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *boxes, ICLTensor *box_ind, ICLTensor *output, Coordinates2D crop_size, | 
 |                              InterpolationPolicy method, float extrapolation_value) | 
 | { | 
 |     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, boxes, box_ind); | 
 |     ARM_COMPUTE_ERROR_THROW_ON(CLCropResize::validate(input->info(), boxes->info(), box_ind->info(), output->info(), crop_size, method, extrapolation_value)); | 
 |  | 
 |     TensorShape output_shape = TensorShape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y, boxes->info()->tensor_shape()[1]); | 
 |     auto_init_if_empty(*output->info(), output_shape, 1, DataType::F32); | 
 |  | 
 |     _num_boxes = boxes->info()->tensor_shape()[1]; | 
 |     TensorShape out_shape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y); | 
 |  | 
 |     _input               = input; | 
 |     _boxes               = boxes; | 
 |     _box_ind             = box_ind; | 
 |     _output              = output; | 
 |     _method              = method; | 
 |     _extrapolation_value = extrapolation_value; | 
 |  | 
 |     // For each crop box: | 
 |     // - The initial cropped image is produced as specified by boxes[i] from the 3D image input[box_ind[i]]. | 
 |     //   Possibly using a CLCropKernel and up to four CLMemsetKernels. | 
 |     // - A tensor is required to hold this initial cropped image. | 
 |     // - A scale function is used to resize the cropped image to the size specified by crop_size. | 
 |     // - A tensor is required to hold the final scaled image before it is copied into the 4D output | 
 |     //   that will hold all final cropped and scaled 3D images using CLCopyKernel. | 
 |  | 
 |     // The contents of _boxes and _box_ind are required to calculate the shape | 
 |     // of the initial cropped image and thus are required to configure the | 
 |     // kernels used for cropping and scaling. | 
 |     _boxes->map(CLScheduler::get().queue()); | 
 |     _box_ind->map(CLScheduler::get().queue()); | 
 |     for(unsigned int num_box = 0; num_box < _num_boxes; ++num_box) | 
 |     { | 
 |         auto       crop_tensor = support::cpp14::make_unique<CLTensor>(); | 
 |         TensorInfo crop_result_info(1, DataType::F32); | 
 |         crop_result_info.set_data_layout(DataLayout::NHWC); | 
 |         crop_tensor->allocator()->init(crop_result_info); | 
 |         _crop_results.emplace_back(std::move(crop_tensor)); | 
 |  | 
 |         auto       scale_tensor = support::cpp14::make_unique<CLTensor>(); | 
 |         TensorInfo scaled_result_info(out_shape, 1, DataType::F32); | 
 |         scaled_result_info.set_data_layout(DataLayout::NHWC); | 
 |         scale_tensor->allocator()->init(scaled_result_info); | 
 |         _scaled_results.emplace_back(std::move(scale_tensor)); | 
 |  | 
 |         // Size of the crop box in _boxes has to be given before the configure | 
 |         uint32_t    batch_index; | 
 |         Coordinates start{}; | 
 |         Coordinates end{}; | 
 |         configure_crop(_input, _boxes, _box_ind, _crop_results[num_box].get(), num_box, start, end, batch_index); | 
 |  | 
 |         auto scale_kernel = support::cpp14::make_unique<CLScale>(); | 
 |         scale_kernel->configure(compile_context, _crop_results[num_box].get(), _scaled_results[num_box].get(), ScaleKernelInfo{ _method, BorderMode::CONSTANT, PixelValue(_extrapolation_value), SamplingPolicy::TOP_LEFT }); | 
 |         _scale.emplace_back(std::move(scale_kernel)); | 
 |  | 
 |         Window win = calculate_max_window(*_output->info()); | 
 |         win.set(3, Window::Dimension(num_box, num_box + 1, 1)); | 
 |  | 
 |         auto copy_kernel = support::cpp14::make_unique<CLCopyKernel>(); | 
 |         copy_kernel->configure(compile_context, _scaled_results[num_box].get(), _output, &win); | 
 |         _copy.emplace_back(std::move(copy_kernel)); | 
 |  | 
 |         _crop_results[num_box]->allocator()->allocate(); | 
 |         _scaled_results[num_box]->allocator()->allocate(); | 
 |  | 
 |         bool is_width_flipped  = end[0] < start[0]; | 
 |         bool is_height_flipped = end[1] < start[1]; | 
 |         /** The number of rows out of bounds at the start and end of _crop_results[num_box].get(). */ | 
 |         std::array<int32_t, 2> rows_out_of_bounds{ 0 }; | 
 |         /** The number of columns out of bounds at the start and end of _crop_results[num_box].get(). */ | 
 |         std::array<int32_t, 2> cols_out_of_bounds{ 0 }; | 
 |         if(is_height_flipped) | 
 |         { | 
 |             rows_out_of_bounds[0] = start[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(start[1] - _input->info()->dimension(2) + 1, _crop_results[num_box].get()->info()->dimension(2)) : 0; | 
 |             rows_out_of_bounds[1] = end[1] < 0 ? std::min(-end[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2))) : 0; | 
 |         } | 
 |         else | 
 |         { | 
 |             rows_out_of_bounds[0] = start[1] < 0 ? std::min(-start[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2))) : 0; | 
 |             rows_out_of_bounds[1] = end[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(end[1] - _input->info()->dimension(2) + 1, _crop_results[num_box].get()->info()->dimension(2)) : 0; | 
 |         } | 
 |         if(is_width_flipped) | 
 |         { | 
 |             cols_out_of_bounds[0] = start[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(start[0] - _input->info()->dimension(1) + 1, _crop_results[num_box].get()->info()->dimension(1)) : 0; | 
 |             cols_out_of_bounds[1] = end[0] < 0 ? std::min(-end[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1))) : 0; | 
 |         } | 
 |         else | 
 |         { | 
 |             cols_out_of_bounds[0] = start[0] < 0 ? std::min(-start[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1))) : 0; | 
 |             cols_out_of_bounds[1] = end[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(end[0] - _input->info()->dimension(1) + 1, _crop_results[num_box].get()->info()->dimension(1)) : 0; | 
 |         } | 
 |  | 
 |         Window full_window = calculate_max_window(*_crop_results[num_box].get()->info()); | 
 |  | 
 |         //  Full _crop_results[num_box].get() window: | 
 |         //  -------------------------------- | 
 |         //  |          Out of bounds       | | 
 |         //  |          rows before         | | 
 |         //  |------------------------------| | 
 |         //  | Out of | In         | Out of | | 
 |         //  | bounds | bounds     | bounds | | 
 |         //  | cols   | elements   | cols   | | 
 |         //  | before | copied     | after  | | 
 |         //  |        | from input |        | | 
 |         //  |------------------------------| | 
 |         //  |        Out of bounds         | | 
 |         //  |        rows after            | | 
 |         //  |------------------------------| | 
 |         // Use a separate _crop_results[num_box].get() window for each section of the full _crop_results[num_box].get() window. | 
 |         // Fill all _crop_results[num_box].get() rows that have no elements that are within the input bounds | 
 |         // with the extrapolation value using memset. | 
 |         // First for the rows before the in bounds rows. | 
 |         if(rows_out_of_bounds[0] > 0) | 
 |         { | 
 |             Window slice_fill_rows_before(full_window); | 
 |             slice_fill_rows_before.set(2, Window::Dimension(0, rows_out_of_bounds[0], 1)); | 
 |             auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>(); | 
 |             kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_rows_before); | 
 |             _internal_kernels.push_back(std::move(kernel)); | 
 |         } | 
 |  | 
 |         Window slice_in(full_window); | 
 |         slice_in.set(2, Window::Dimension(rows_out_of_bounds[0], _crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1], 1)); | 
 |         slice_in.set(1, Window::Dimension(cols_out_of_bounds[0], _crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1], 1)); | 
 |  | 
 |         int rows_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2)) - rows_out_of_bounds[0] - rows_out_of_bounds[1]; | 
 |         if(rows_in_bounds > 0) | 
 |         { | 
 |             // Fill all elements that share a row with an in bounds element with the extrapolation value. | 
 |             if(cols_out_of_bounds[0] > 0) | 
 |             { | 
 |                 Window slice_fill_cols_before(slice_in); | 
 |                 slice_fill_cols_before.set(1, Window::Dimension(0, cols_out_of_bounds[0], 1)); | 
 |                 auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>(); | 
 |                 kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_cols_before); | 
 |                 _internal_kernels.push_back(std::move(kernel)); | 
 |             } | 
 |  | 
 |             if(cols_out_of_bounds[1] > 0) | 
 |             { | 
 |                 Window slice_fill_cols_after(slice_in); | 
 |                 slice_fill_cols_after.set(1, Window::Dimension(_crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1], _crop_results[num_box].get()->info()->dimension(1), 1)); | 
 |                 auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>(); | 
 |                 kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_cols_after); | 
 |                 _internal_kernels.push_back(std::move(kernel)); | 
 |             } | 
 |  | 
 |             // Copy all elements within the input bounds from the input tensor. | 
 |             int cols_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1)) - cols_out_of_bounds[0] - cols_out_of_bounds[1]; | 
 |             if(cols_in_bounds > 0) | 
 |             { | 
 |                 Coordinates2D start_in{ is_width_flipped ? start[0] - cols_out_of_bounds[0] : start[0] + cols_out_of_bounds[0], | 
 |                                         is_height_flipped ? start[1] - rows_out_of_bounds[0] : start[1] + rows_out_of_bounds[0] }; | 
 |                 Coordinates2D end_in{ is_width_flipped ? start_in.x - cols_in_bounds + 1 : start_in.x + cols_in_bounds - 1, | 
 |                                       is_height_flipped ? start_in.y - rows_in_bounds + 1 : start_in.y + rows_in_bounds - 1 }; | 
 |                 auto kernel = arm_compute::support::cpp14::make_unique<CLCropKernel>(); | 
 |  | 
 |                 kernel->configure(compile_context, _input, _crop_results[num_box].get(), start_in, end_in, batch_index, extrapolation_value, &slice_in); | 
 |                 _internal_kernels.push_back(std::move(kernel)); | 
 |             } | 
 |         } | 
 |  | 
 |         // Fill all rows after the in bounds elements with the extrapolation value. | 
 |         if(rows_out_of_bounds[1] > 0) | 
 |         { | 
 |             Window slice_fill_rows_after(full_window); | 
 |             slice_fill_rows_after.set(2, Window::Dimension(_crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1], _crop_results[num_box].get()->info()->dimension(2), 1)); | 
 |             auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>(); | 
 |             kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_rows_after); | 
 |             _internal_kernels.push_back(std::move(kernel)); | 
 |         } | 
 |     } | 
 |     _boxes->unmap(CLScheduler::get().queue()); | 
 |     _box_ind->unmap(CLScheduler::get().queue()); | 
 |     CLScheduler::get().sync(); | 
 | } | 
 |  | 
 | void CLCropResize::run() | 
 | { | 
 |     ARM_COMPUTE_ERROR_ON_MSG(_output == nullptr, "Unconfigured function"); | 
 |  | 
 |     for(unsigned int i = 0; i < _internal_kernels.size(); ++i) | 
 |     { | 
 |         CLScheduler::get().enqueue(*(_internal_kernels[i])); | 
 |     } | 
 |  | 
 |     CLScheduler::get().sync(); | 
 |     for(auto &kernel : _scale) | 
 |     { | 
 |         kernel->run(); | 
 |     } | 
 |     CLScheduler::get().sync(); | 
 |     for(auto &kernel : _copy) | 
 |     { | 
 |         CLScheduler::get().enqueue(*kernel, true); | 
 |     } | 
 |     CLScheduler::get().sync(); | 
 | } | 
 | } // namespace arm_compute |