blob: 5fe9b95a48b3239a5cc31c6ae50e1dd683650f6f [file] [log] [blame]
/*
* Copyright (c) 2020-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if defined(ARM_COMPUTE_ENABLE_SVE2)
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/SVEMath.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include <arm_sve.h>
namespace arm_compute
{
namespace cpu
{
void add_qasymm8_sve2(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)
{
ARM_COMPUTE_UNUSED(policy);
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x();
const auto all_true_pg = svptrue_b8();
const UniformQuantizationInfo iq1_info = src0->info()->quantization_info().uniform();
const UniformQuantizationInfo iq2_info = src1->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform();
const auto invvscaleo = svdup_n_f32(1.f / oq_info.scale);
const auto voffseto = svdup_n_f32(oq_info.offset);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? src1 : src0;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0;
const svfloat32_t vscale1 = is_broadcast_input_2 ? svdup_n_f32(iq1_info.scale) : svdup_n_f32(iq2_info.scale);
const svfloat32_t vscale2 = is_broadcast_input_2 ? svdup_n_f32(iq2_info.scale) : svdup_n_f32(iq1_info.scale);
const svint32_t voffset1 = is_broadcast_input_2 ? svdup_n_s32(iq1_info.offset) : svdup_n_s32(iq2_info.offset);
const svint32_t voffset2 = is_broadcast_input_2 ? svdup_n_s32(iq2_info.offset) : svdup_n_s32(iq1_info.offset);
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(dst, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
const uint8_t broadcast_value = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
const svuint8_t broadcast_value_vec = svdup_n_u8(broadcast_value);
int x = window_start_x;
svbool_t pg = svwhilelt_b8(x, window_end_x);
const auto bf_0 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(broadcast_value_vec))), voffset2)), vscale2);
const auto bf_1 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(broadcast_value_vec))), voffset2)), vscale2);
const auto bf_2 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(broadcast_value_vec))), voffset2)), vscale2);
const auto bf_3 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(broadcast_value_vec))), voffset2)), vscale2);
do
{
const svuint8_t a = svld1_u8(pg, non_broadcast_input_ptr + x);
const auto af_0 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(a))), voffset1)), vscale1);
const auto af_1 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(a))), voffset1)), vscale1);
const auto af_2 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(a))), voffset1)), vscale1);
const auto af_3 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(a))), voffset1)), vscale1);
const auto rf_0 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_0, bf_0), invvscaleo));
const auto rf_1 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_1, bf_1), invvscaleo));
const auto rf_2 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_2, bf_2), invvscaleo));
const auto rf_3 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_3, bf_3), invvscaleo));
const auto pa = svqxtnt_u32(svqxtnb_u32(rf_0), rf_1);
const auto pb = svqxtnt_u32(svqxtnb_u32(rf_2), rf_3);
const auto res = svqxtnt_u16(svqxtnb_u16(pa), pb);
svst1_u8(pg, output_ptr + x, res);
x += svcntb();
pg = svwhilelt_b8(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(src0, input1_win);
Iterator input2(src1, input2_win);
Iterator output(dst, win);
const auto vscale1 = svdup_n_f32(iq1_info.scale);
const auto vscale2 = svdup_n_f32(iq2_info.scale);
const auto voffset1 = svdup_n_s32(iq1_info.offset);
const auto voffset2 = svdup_n_s32(iq2_info.offset);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = window_start_x;
svbool_t pg = svwhilelt_b8(x, window_end_x);
do
{
const auto a = svld1_u8(pg, input1_ptr + x);
const auto b = svld1_u8(pg, input2_ptr + x);
const auto af_0 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(a))), voffset1)), vscale1);
const auto af_1 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(a))), voffset1)), vscale1);
const auto af_2 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(a))), voffset1)), vscale1);
const auto af_3 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(a))), voffset1)), vscale1);
const auto bf_0 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(b))), voffset2)), vscale2);
const auto bf_1 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(b))), voffset2)), vscale2);
const auto bf_2 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(b))), voffset2)), vscale2);
const auto bf_3 = svmul_f32_z(pg, svcvt_f32_s32_z(pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(b))), voffset2)), vscale2);
const auto rf_0 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_0, bf_0), invvscaleo));
const auto rf_1 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_1, bf_1), invvscaleo));
const auto rf_2 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_2, bf_2), invvscaleo));
const auto rf_3 = svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_3, bf_3), invvscaleo));
const auto pa = svqxtnt_u32(svqxtnb_u32(rf_0), rf_1);
const auto pb = svqxtnt_u32(svqxtnb_u32(rf_2), rf_3);
const auto res = svqxtnt_u16(svqxtnb_u16(pa), pb);
svst1_u8(pg, output_ptr + x, res);
x += svcntb();
pg = svwhilelt_b8(x, window_end_x);
}
while(svptest_any(all_true_pg, pg));
},
input1, input2, output);
}
}
} // namespace cpu
} // namespace arm_compute
#endif //ARM_COMPUTE_ENABLE_SVE2