blob: 53179ae95f1f79e9b5aabbc4e0f869b4d205ce20 [file] [log] [blame]
/*
* Copyright (c) 2018-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuElementwiseKernel.h"
#include "arm_compute/core/Helpers.h"
#include "src/core/CPP/Validate.h"
#include "src/core/common/Registrars.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/elementwise_binary/list.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
struct ElementwiseSelectorData
{
DataType dt;
const CPUInfo &ci;
};
using ElementwiseSelector = std::add_pointer<bool(const ElementwiseSelectorData &)>::type;
using UKernelType = CpuElementwiseKernel::ElementwiseFunction;
struct ElementwiseKernel
{
const char *name;
const ElementwiseSelector is_selected;
UKernelType *ukernel;
};
template <ArithmeticOperation op>
CpuElementwiseKernel::UKernelInfo configure_arithm_func(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_UNUSED(src1, dst);
static ElementwiseKernel kernels[] =
{
#if defined(ARM_COMPUTE_ENABLE_SVE)
{
"sve_fp32_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F32 && data.ci.has_sve(); },
REGISTER_FP32_SVE((arm_compute::cpu::sve_fp32_elementwise_binary<op>))
},
{
"sve_s32_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S32 && data.ci.has_sve(); },
REGISTER_INTEGER_SVE((arm_compute::cpu::sve_s32_elementwise_binary<op>))
},
{
"sve_s16_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S16 && data.ci.has_sve(); },
REGISTER_INTEGER_SVE((arm_compute::cpu::sve_s16_elementwise_binary<op>))
},
{
"sve_fp16_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F16 && data.ci.has_sve(); },
REGISTER_FP16_SVE((arm_compute::cpu::sve_fp16_elementwise_binary<op>))
},
#endif /* defined(ARM_COMPUTE_ENABLE_SVE) */
#if defined(ARM_COMPUTE_ENABLE_NEON)
{
"neon_fp32_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F32; },
REGISTER_FP32_NEON((arm_compute::cpu::neon_fp32_elementwise_binary<op>))
},
{
"neon_s32_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S32; },
REGISTER_INTEGER_NEON((arm_compute::cpu::neon_s32_elementwise_binary<op>))
},
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
{
"neon_fp16_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F16 && data.ci.has_fp16(); },
REGISTER_FP16_NEON((arm_compute::cpu::neon_fp16_elementwise_binary<op>))
},
#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
{
"neon_s16_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S16; },
REGISTER_INTEGER_NEON((arm_compute::cpu::neon_s16_elementwise_binary<op>))
},
#endif /* defined(ARM_COMPUTE_ENABLE_NEON) */
#if defined(ARM_COMPUTE_ENABLE_SVE2)
{
"sve2_qu8_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8 && data.ci.has_sve2(); },
REGISTER_QASYMM8_SVE2((arm_compute::cpu::sve2_qasymm8_elementwise_binary<op>))
},
{
"sve2_qs8_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED && data.ci.has_sve2(); },
REGISTER_QASYMM8_SIGNED_SVE2((arm_compute::cpu::sve2_qasymm8_signed_elementwise_binary<op>))
},
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
#if defined(ARM_COMPUTE_ENABLE_NEON) || defined(ARM_COMPUTE_ENABLE_SVE)
{
"neon_qu8_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8; },
REGISTER_QASYMM8_NEON((arm_compute::cpu::neon_qasymm8_elementwise_binary<op>))
},
{
"neon_qs8_elementwise",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
REGISTER_QASYMM8_SIGNED_NEON((arm_compute::cpu::neon_qasymm8_signed_elementwise_binary<op>))
},
#endif /* defined(ARM_COMPUTE_ENABLE_NEON) || defined(ARM_COMPUTE_ENABLE_SVE) */
};
for(const auto &uk : kernels)
{
if(uk.is_selected({ src0->data_type(), CPUInfo::get() }))
{
return { uk.name, uk.ukernel };
}
}
return { "", nullptr };
}
template <ComparisonOperation op>
CpuElementwiseKernel::UKernelInfo configure_comp_func(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_UNUSED(src1, dst);
static ElementwiseKernel kernels[] =
{
#if defined(ARM_COMPUTE_ENABLE_SVE)
{
"sve_u8_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::U8 && data.ci.has_sve(); },
REGISTER_INTEGER_SVE(arm_compute::cpu::sve_u8_comparison_elementwise_binary<op>)
},
{
"sve_fp32_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F32 && data.ci.has_sve(); },
REGISTER_FP32_SVE(arm_compute::cpu::sve_fp32_comparison_elementwise_binary<op>)
},
{
"sve_s16_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S16 && data.ci.has_sve(); },
REGISTER_INTEGER_SVE(arm_compute::cpu::sve_s16_comparison_elementwise_binary<op>)
},
{
"sve_s32_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S32 && data.ci.has_sve(); },
REGISTER_INTEGER_SVE(arm_compute::cpu::sve_s32_comparison_elementwise_binary<op>)
},
#endif /* defined(ARM_COMPUTE_ENABLE_SVE) */
#if defined(ARM_COMPUTE_ENABLE_NEON)
{
"neon_u8_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::U8; },
REGISTER_INTEGER_NEON(arm_compute::cpu::neon_u8_comparison_elementwise_binary<op>)
},
{
"neon_fp32_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F32; },
REGISTER_FP32_NEON(arm_compute::cpu::neon_fp32_comparison_elementwise_binary<op>)
},
{
"neon_s16_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S16; },
REGISTER_INTEGER_NEON(arm_compute::cpu::neon_s16_comparison_elementwise_binary<op>)
},
{
"neon_s32_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::S32; },
REGISTER_INTEGER_NEON(arm_compute::cpu::neon_s32_comparison_elementwise_binary<op>)
},
#endif /* defined(ARM_COMPUTE_ENABLE_NEON) */
#if defined(ARM_COMPUTE_ENABLE_SVE2)
{
"sve2_qu8_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8 && data.ci.has_sve2(); },
REGISTER_QASYMM8_SVE2(arm_compute::cpu::sve2_qasymm8_comparison_elementwise_binary<op>)
},
{
"sve2_qs8_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED && data.ci.has_sve2(); },
REGISTER_QASYMM8_SIGNED_SVE2(arm_compute::cpu::sve2_qasymm8_signed_comparison_elementwise_binary<op>)
},
#endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */
#if defined(ARM_COMPUTE_ENABLE_NEON) || defined(ARM_COMPUTE_ENABLE_SVE)
{
"neon_qu8_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8; },
REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_qasymm8_comparison_elementwise_binary<op>)
},
{
"neon_qs8_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_qasymm8_signed_comparison_elementwise_binary<op>)
},
#endif /* defined(ARM_COMPUTE_ENABLE_NEON ||ARM_COMPUTE_ENABLE_SVE) */
#if defined(ARM_COMPUTE_ENABLE_SVE)
{
"sve_fp16_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F16 && data.ci.has_sve(); },
REGISTER_FP16_SVE(arm_compute::cpu::sve_fp16_comparison_elementwise_binary<op>)
},
#endif /* defined(ARM_COMPUTE_ENABLE_SVE) */
#if defined(ARM_COMPUTE_ENABLE_NEON) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
{
"neon_fp16_comparison",
[](const ElementwiseSelectorData & data) { return data.dt == DataType::F16 && data.ci.has_fp16(); },
REGISTER_FP16_NEON(arm_compute::cpu::neon_fp16_comparison_elementwise_binary<op>)
},
#endif /* defined(ARM_COMPUTE_ENABLE_NEON) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
};
for(const auto &uk : kernels)
{
if(uk.is_selected({ src0->data_type(), CPUInfo::get() }))
{
return { uk.name, uk.ukernel };
}
}
return { "", nullptr };
}
} // namespace
Status CpuElementwiseKernel::validate_arguments_common(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src0);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &src1);
const TensorShape out_shape = TensorShape::broadcast_shape(src0.tensor_shape(), src1.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// Validate in case of configured dst
if(dst.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0),
"Wrong shape for output");
}
return Status{};
}
void CpuElementwiseKernel::configure_common(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
const auto uk = get_implementation(src0, src1, dst);
_run_method = uk.ukernel;
_name = std::string("CpuElementwiseKernel").append("/").append(uk.name);
// If any of shapes is dynamic, expect a configured window and dst at run-time.
if(src0->is_dynamic() || src1->is_dynamic())
{
return;
}
auto shape_and_window = compute_output_shape_and_window(src0->tensor_shape(), src1->tensor_shape());
auto_init_if_empty(*dst, shape_and_window.first, 1, src0->data_type());
ICpuKernel::configure(shape_and_window.second);
}
void CpuElementwiseKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
_run_method(src0, src1, dst, window);
}
const char *CpuElementwiseKernel::name() const
{
return _name.c_str();
}
/** Arithmetic operators (min, max, squared_diff) */
void CpuArithmeticKernel::configure(ArithmeticOperation op, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = op;
configure_common(src0, src1, dst);
}
Status CpuArithmeticKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
// Validate in case of configured dst
if(dst.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &dst);
}
return validate_arguments_common(src0, src1, dst);
}
Status CpuArithmeticKernel::validate(ArithmeticOperation op, const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_UNUSED(op);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
CpuElementwiseKernel::UKernelInfo CpuArithmeticKernel::get_implementation(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
switch(_op)
{
case ArithmeticOperation::MAX:
return configure_arithm_func<ArithmeticOperation::MAX>(src0, src1, dst);
case ArithmeticOperation::MIN:
return configure_arithm_func<ArithmeticOperation::MIN>(src0, src1, dst);
case ArithmeticOperation::SQUARED_DIFF:
return configure_arithm_func<ArithmeticOperation::SQUARED_DIFF>(src0, src1, dst);
case ArithmeticOperation::PRELU:
return configure_arithm_func<ArithmeticOperation::PRELU>(src0, src1, dst);
case ArithmeticOperation::DIV:
return configure_arithm_func<ArithmeticOperation::DIV>(src0, src1, dst);
case ArithmeticOperation::POWER:
return configure_arithm_func<ArithmeticOperation::POWER>(src0, src1, dst);
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return { "", nullptr };
}
/** The division operator */
void CpuDivisionKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = ArithmeticOperation::DIV;
configure_common(src0, src1, dst);
}
Status CpuDivisionKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::S32, DataType::F16, DataType::F32);
return CpuArithmeticKernel::validate_arguments(src0, src1, dst);
}
Status CpuDivisionKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
/** The power operator */
void CpuPowerKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = ArithmeticOperation::POWER;
configure_common(src0, src1, dst);
}
Status CpuPowerKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::F16, DataType::F32);
return CpuArithmeticKernel::validate_arguments(src0, src1, dst);
}
Status CpuPowerKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
/** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */
void CpuComparisonKernel::configure(ComparisonOperation op, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = op;
configure_common(src0, src1, dst);
}
Status CpuComparisonKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
// Validate in case of configured dst
if(dst.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::U8);
}
return validate_arguments_common(src0, src1, dst);
}
Status CpuComparisonKernel::validate(ComparisonOperation op, const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_UNUSED(op);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
CpuElementwiseKernel::UKernelInfo CpuComparisonKernel::get_implementation(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
switch(_op)
{
case ComparisonOperation::Equal:
return configure_comp_func<ComparisonOperation::Equal>(src0, src1, dst);
case ComparisonOperation::NotEqual:
return configure_comp_func<ComparisonOperation::NotEqual>(src0, src1, dst);
case ComparisonOperation::Greater:
return configure_comp_func<ComparisonOperation::Greater>(src0, src1, dst);
case ComparisonOperation::GreaterEqual:
return configure_comp_func<ComparisonOperation::GreaterEqual>(src0, src1, dst);
case ComparisonOperation::Less:
return configure_comp_func<ComparisonOperation::Less>(src0, src1, dst);
case ComparisonOperation::LessEqual:
return configure_comp_func<ComparisonOperation::LessEqual>(src0, src1, dst);
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return { "", nullptr };
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute