blob: cfe732ab5f9242a0a40a74cdfaf258eb32579f16 [file] [log] [blame]
/*
* Copyright (c) 2017-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuActivationKernel.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/common/Registrars.h"
#include "src/cpu/kernels/activation/list.h"
#include <array>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
static const std::vector<CpuActivationKernel::ActivationKernel> available_kernels =
{
{
"sve_fp16_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::F16 && data.isa.sve; },
REGISTER_FP16_SVE(arm_compute::cpu::sve_fp16_activation)
},
{
"sve_fp32_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::F32 && data.isa.sve; },
REGISTER_FP32_SVE(arm_compute::cpu::sve_fp32_activation)
},
{
"neon_fp16_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::F16 && data.isa.fp16; },
REGISTER_FP16_NEON(arm_compute::cpu::neon_fp16_activation)
},
{
"neon_fp32_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::F32; },
REGISTER_FP32_NEON(arm_compute::cpu::neon_fp32_activation)
},
{
"sve2_qu8_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8 && data.isa.sve2; },
REGISTER_QASYMM8_SVE2(arm_compute::cpu::sve2_qasymm8_activation)
},
{
"sve2_qs8_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED && data.isa.sve2; },
REGISTER_QASYMM8_SIGNED_SVE2(arm_compute::cpu::sve2_qasymm8_signed_activation)
},
{
"sve2_qs16_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::QSYMM16 && data.isa.sve2; },
REGISTER_QSYMM16_SVE2(arm_compute::cpu::sve2_qsymm16_activation)
},
{
"neon_qu8_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8; },
REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_qasymm8_activation)
},
{
"neon_qs8_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_qasymm8_signed_activation)
},
{
"neon_qs16_activation",
[](const DataTypeISASelectorData & data) { return data.dt == DataType::QSYMM16; },
REGISTER_QSYMM16_NEON(arm_compute::cpu::neon_qsymm16_activation)
},
};
/* Supported activation in the 8-bit integer domain */
static const std::array<ActivationLayerInfo::ActivationFunction, 7> qasymm8_activations =
{
ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH,
ActivationLayerInfo::ActivationFunction::HARD_SWISH,
ActivationLayerInfo::ActivationFunction::LEAKY_RELU,
};
/* Supported activation in the 16-bit integer domain */
static const std::array<ActivationLayerInfo::ActivationFunction, 3> qsymm16_activations =
{
ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH,
ActivationLayerInfo::ActivationFunction::HARD_SWISH
};
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const ActivationLayerInfo &activation_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::QSYMM16, DataType::F16, DataType::F32);
const auto *uk = CpuActivationKernel::get_implementation(DataTypeISASelectorData{ src->data_type(), CPUInfo::get().get_isa() });
ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
const DataType data_type = src->data_type();
const QuantizationInfo &oq_info = (dst != nullptr) ? dst->quantization_info() : src->quantization_info();
const ActivationLayerInfo::ActivationFunction f_act = activation_info.activation();
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_asymmetric(data_type) && (std::find(std::begin(qasymm8_activations), std::end(qasymm8_activations), f_act) == std::end(qasymm8_activations)),
"For QASYMM8 only hard swish, leaky relu, tanh, logistic, relu and lower/upper bounded relu are supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_symmetric(data_type) && (std::find(std::begin(qsymm16_activations), std::end(qsymm16_activations), f_act) == std::end(qsymm16_activations)),
"For QSYMM16 only tanh and logistic are supported");
ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::TANH)
&& (oq_info != QuantizationInfo(1.f / 128.f, 128)));
ARM_COMPUTE_RETURN_ERROR_ON((data_type == DataType::QASYMM8 || data_type == DataType::QASYMM16) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
&& (oq_info != QuantizationInfo(1.f / 256.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 128.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(data_type == DataType::QASYMM8_SIGNED && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 256.f, -128)));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::TANH) && (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) && (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) && (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
// Checks performed when dst is configured
if((dst != nullptr) && (dst->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src, ITensorInfo *dst)
{
// Configure kernel window
Window win = calculate_max_window(*src, Steps());
if(dst != nullptr)
{
// dst auto inizialitation if not yet initialized
auto_init_if_empty(*dst, *src->clone());
}
return std::make_pair(Status{}, win);
}
} // namespace
void CpuActivationKernel::configure(const ITensorInfo *src, ITensorInfo *dst, ActivationLayerInfo activation_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, activation_info));
const auto uk = CpuActivationKernel::get_implementation(DataTypeISASelectorData{ src->data_type(), CPUInfo::get().get_isa() });
ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
_act_info = activation_info;
_run_method = uk->ukernel;
_name = std::string("CpuActivationKernel").append("/").append(uk->name);
// Configure kernel window
auto win_config = validate_and_configure_window(src, dst);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICPPKernel::configure(win_config.second);
}
Status CpuActivationKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const ActivationLayerInfo &act_info)
{
ARM_COMPUTE_UNUSED(act_info);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), (dst != nullptr) ? dst->clone().get() : nullptr).first);
return Status{};
}
size_t CpuActivationKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
ARM_COMPUTE_UNUSED(thread_count);
ARM_COMPUTE_UNUSED(platform);
return ICPPKernel::default_mws;
}
void CpuActivationKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
// Early exit on disabled activation
if(!_act_info.enabled())
{
return;
}
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
ARM_COMPUTE_ERROR_ON(tensors.empty());
ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
const ITensor *src = tensors.get_const_tensor(TensorType::ACL_SRC);
ITensor *dst = tensors.get_tensor(TensorType::ACL_DST);
_run_method(src, dst, _act_info, window);
}
const char *CpuActivationKernel::name() const
{
return _name.c_str();
}
const std::vector<CpuActivationKernel::ActivationKernel> &CpuActivationKernel::get_available_kernels()
{
return available_kernels;
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute