blob: 9e671e317353af4a3ad4ef732f5fbde004eef455 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "PoolingLayer.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/validation/Helpers.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
using namespace arm_compute::misc::shape_calculator;
template <typename T, typename ACC_T, typename std::enable_if<is_floating_point<T>::value, int>::type>
SimpleTensor<T> pooling_layer_internal(const SimpleTensor<T> &src, const PoolingLayerInfo &info, SimpleTensor<uint32_t> *indices, DataLayout data_layout)
{
ARM_COMPUTE_ERROR_ON(info.is_global_pooling && (src.shape().x() != src.shape().y()));
// Create reference
SimpleTensor<T> dst{ compute_pool_shape(TensorInfo(src.shape(), 1, src.data_type()), info), src.data_type(), 1 };
auto pooled_shape = compute_pool_shape(TensorInfo(src.shape(), 1, src.data_type()), info);
if(indices)
{
*indices = SimpleTensor<uint32_t> { pooled_shape, DataType::U32, 1 };
}
const int pool_size_x = info.is_global_pooling ? src.shape().x() : info.pool_size.width;
const int pool_size_y = info.is_global_pooling ? src.shape().y() : info.pool_size.height;
PoolingType type = info.pool_type;
int pool_stride_x = info.pad_stride_info.stride().first;
int pool_stride_y = info.pad_stride_info.stride().second;
int pad_left = info.pad_stride_info.pad_left();
int pad_top = info.pad_stride_info.pad_top();
int pad_right = info.pad_stride_info.pad_right();
int pad_bottom = info.pad_stride_info.pad_bottom();
bool exclude_padding = info.exclude_padding;
const auto w_src = static_cast<int>(src.shape()[0]);
const auto h_src = static_cast<int>(src.shape()[1]);
const auto z_src = static_cast<int>(src.shape()[2]);
const auto b_src = static_cast<int>(src.shape()[3]);
const int upper_dims = src.shape().total_size() / (w_src * h_src);
const auto w_dst = static_cast<int>(dst.shape()[0]);
const auto h_dst = static_cast<int>(dst.shape()[1]);
const auto z_dst = static_cast<int>(dst.shape()[2]);
TensorShape shape_nhwc(src.shape());
permute(shape_nhwc, PermutationVector(2U, 0U, 1U));
if(type == PoolingType::MAX)
{
for(int b = 0; b < b_src; ++b)
{
for(int r = 0; r < z_src; ++r)
{
for(int h = 0; h < h_dst; ++h)
{
for(int w = 0; w < w_dst; ++w)
{
int wstart = w * pool_stride_x - pad_left;
int hstart = h * pool_stride_y - pad_top;
int wend = std::min(wstart + pool_size_x, w_src);
int hend = std::min(hstart + pool_size_y, h_src);
wstart = std::max(wstart, 0);
hstart = std::max(hstart, 0);
auto max_val = -std::numeric_limits<ACC_T>::infinity();
int max_index{ 0 };
for(int y = hstart; y < hend; ++y)
{
for(int x = wstart; x < wend; ++x)
{
const auto val = static_cast<ACC_T>(src[b * z_src * h_src * w_src + r * h_src * w_src + y * w_src + x]);
if(val > max_val)
{
max_val = val;
if(data_layout == DataLayout::NCHW)
{
max_index = coord2index(src.shape(), Coordinates(x, y, r, 0));
}
else
{
max_index = coord2index(shape_nhwc, Coordinates(r, x, y, 0));
}
}
}
}
dst[b * z_dst * h_dst * w_dst + r * h_dst * w_dst + h * w_dst + w] = static_cast<T>(max_val);
if(indices)
{
(*indices)[b * z_dst * h_dst * w_dst + r * h_dst * w_dst + h * w_dst + w] = max_index;
}
}
}
}
}
}
else // Average or l2 pooling
{
for(int r = 0; r < upper_dims; ++r)
{
for(int h = 0; h < h_dst; ++h)
{
for(int w = 0; w < w_dst; ++w)
{
ACC_T avg_val(0);
int wstart = w * pool_stride_x - pad_left;
int hstart = h * pool_stride_y - pad_top;
int wend = std::min(wstart + pool_size_x, w_src + pad_right);
int hend = std::min(hstart + pool_size_y, h_src + pad_bottom);
int pool = (hend - hstart) * (wend - wstart);
wstart = std::max(wstart, 0);
hstart = std::max(hstart, 0);
wend = std::min(wend, w_src);
hend = std::min(hend, h_src);
// Exclude padding pixels from the average
if(exclude_padding)
{
pool = (hend - hstart) * (wend - wstart);
}
if(type == PoolingType::AVG)
{
for(int y = hstart; y < hend; ++y)
{
for(int x = wstart; x < wend; ++x)
{
avg_val += static_cast<ACC_T>(src[r * h_src * w_src + y * w_src + x]);
}
}
dst[r * h_dst * w_dst + h * w_dst + w] = avg_val / pool;
}
else
{
for(int y = hstart; y < hend; ++y)
{
for(int x = wstart; x < wend; ++x)
{
const auto val = static_cast<ACC_T>(src[r * h_src * w_src + y * w_src + x]);
avg_val += val * val;
}
}
dst[r * h_dst * w_dst + h * w_dst + w] = static_cast<T>(std::sqrt(avg_val / pool));
}
}
}
}
}
return dst;
}
template SimpleTensor<float> pooling_layer_internal<float>(const SimpleTensor<float> &src, const PoolingLayerInfo &info, SimpleTensor<uint32_t> *indices, DataLayout data_layout);
template SimpleTensor<half> pooling_layer_internal<half>(const SimpleTensor<half> &src, const PoolingLayerInfo &info, SimpleTensor<uint32_t> *indices, DataLayout data_layout);
template SimpleTensor<half> pooling_layer_internal<half, float>(const SimpleTensor<half> &src, const PoolingLayerInfo &info, SimpleTensor<uint32_t> *indices, DataLayout data_layout);
template <typename T>
SimpleTensor<T> pooling_layer(const SimpleTensor<T> &src, const PoolingLayerInfo &info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices, DataLayout data_layout)
{
ARM_COMPUTE_UNUSED(output_qinfo);
return pooling_layer_internal<T, T>(src, info, indices, data_layout);
}
template <>
SimpleTensor<uint8_t> pooling_layer<uint8_t>(const SimpleTensor<uint8_t> &src, const PoolingLayerInfo &info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices,
DataLayout data_layout)
{
SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
SimpleTensor<float> dst_tmp = pooling_layer_internal<float>(src_tmp, info, indices, data_layout);
SimpleTensor<uint8_t> dst = convert_to_asymmetric<uint8_t>(dst_tmp, output_qinfo);
return dst;
}
template <>
SimpleTensor<int8_t> pooling_layer<int8_t>(const SimpleTensor<int8_t> &src, const PoolingLayerInfo &info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices, DataLayout data_layout)
{
SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
SimpleTensor<float> dst_tmp = pooling_layer_internal<float>(src_tmp, info, indices, data_layout);
SimpleTensor<int8_t> dst = convert_to_asymmetric<int8_t>(dst_tmp, output_qinfo);
return dst;
}
template <>
SimpleTensor<half> pooling_layer(const SimpleTensor<half> &src, const PoolingLayerInfo &info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices, DataLayout data_layout)
{
ARM_COMPUTE_UNUSED(output_qinfo);
if(src.data_type() == DataType::F16 && info.fp_mixed_precision)
{
return pooling_layer_internal<half, float>(src, info, indices, data_layout);
}
return pooling_layer_internal<half>(src, info, indices, data_layout);
}
template SimpleTensor<float> pooling_layer(const SimpleTensor<float> &src, const PoolingLayerInfo &info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices, DataLayout data_layout);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute