blob: 8d70ca541557ada8b4f6b2315ea24322d96d658d [file] [log] [blame]
/*
* Copyright (c) 2017-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
#include "arm_compute/runtime/RuntimeContext.h"
#include "arm_compute/runtime/Tensor.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "src/common/cpuinfo/CpuIsaInfo.h"
#include "src/cpu/kernels/CpuActivationKernel.h"
#include "tests/NEON/Accessor.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/ActivationFunctionsDataset.h"
#include "tests/datasets/ShapeDatasets.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/ActivationLayerFixture.h"
#include "arm_compute/Acl.hpp"
#include "support/Requires.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
RelativeTolerance<float> tolerance_float_sqrt(0.0001f);
/** Define relative tolerance of the activation layer.
*
* @param[in] data_type The data type used.
* @param[in] activation The activation function used.
*
* @return Relative tolerance depending on the activation function.
*/
RelativeTolerance<float> relative_tolerance(DataType data_type, ActivationLayerInfo::ActivationFunction activation)
{
switch(activation)
{
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
case ActivationLayerInfo::ActivationFunction::ELU:
case ActivationLayerInfo::ActivationFunction::SQRT:
case ActivationLayerInfo::ActivationFunction::TANH:
case ActivationLayerInfo::ActivationFunction::HARD_SWISH:
switch(data_type)
{
case DataType::F16:
#if defined(ENABLE_SVE)
return RelativeTolerance<float>(0.25f);
#else // !defined(ENABLE_SVE)
return RelativeTolerance<float>(0.1f);
#endif // defined(ENABLE_SVE)
default:
return RelativeTolerance<float>(0.05f);
}
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
switch(data_type)
{
case DataType::F16:
#if defined(ENABLE_SVE)
return RelativeTolerance<float>(0.9f);
#else // !defined(ENABLE_SVE)
return RelativeTolerance<float>(0.01f);
#endif // defined(ENABLE_SVE)
default:
return RelativeTolerance<float>(0.00001f);
}
default:
return RelativeTolerance<float>(0.f);
}
}
/** Define absolute tolerance of the activation layer.
*
* @param[in] data_type The data type used.
* @param[in] activation The activation function used.
*
* @return Absolute tolerance depending on the activation function.
*/
AbsoluteTolerance<float> absolute_tolerance(DataType data_type, ActivationLayerInfo::ActivationFunction activation)
{
switch(activation)
{
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
case ActivationLayerInfo::ActivationFunction::SQRT:
case ActivationLayerInfo::ActivationFunction::TANH:
case ActivationLayerInfo::ActivationFunction::HARD_SWISH:
switch(data_type)
{
case DataType::F16:
#if defined(ENABLE_SVE)
return AbsoluteTolerance<float>(0.25f);
#else // !defined(ENABLE_SVE)
return AbsoluteTolerance<float>(0.01f);
#endif // defined(ENABLE_SVE)
default:
return AbsoluteTolerance<float>(0.00001f);
}
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
switch(data_type)
{
case DataType::F16:
#if defined(ENABLE_SVE)
return AbsoluteTolerance<float>(0.9f);
#else // !defined(ENABLE_SVE)
return AbsoluteTolerance<float>(0.01f);
#endif // defined(ENABLE_SVE)
default:
return AbsoluteTolerance<float>(0.00001f);
}
default:
return AbsoluteTolerance<float>(0.f);
}
}
/** Define absolute tolerance of the activation layer for qasymm8.
*
* @param[in] activation The activation function used.
*
* @return Absolute tolerance depending on the activation function.
*/
AbsoluteTolerance<uint8_t> tolerance_qasymm8(ActivationLayerInfo::ActivationFunction activation)
{
switch(activation)
{
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
case ActivationLayerInfo::ActivationFunction::SQRT:
case ActivationLayerInfo::ActivationFunction::TANH:
case ActivationLayerInfo::ActivationFunction::HARD_SWISH:
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
case ActivationLayerInfo::ActivationFunction::LEAKY_RELU:
return AbsoluteTolerance<uint8_t>(1);
default:
return AbsoluteTolerance<uint8_t>(0);
}
}
constexpr AbsoluteTolerance<int16_t> tolerance_qsymm16(1);
/** CNN data types */
const auto CNNDataTypes = framework::dataset::make("DataType",
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
DataType::F16,
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
DataType::F32,
});
const auto NeonActivationFunctionsDataset = concat(datasets::ActivationFunctions(), framework::dataset::make("ActivationFunction", ActivationLayerInfo::ActivationFunction::HARD_SWISH));
/** Input data sets. */
const auto ActivationDataset = combine(combine(framework::dataset::make("InPlace", { false, true }), NeonActivationFunctionsDataset), framework::dataset::make("AlphaBeta", { 0.5f, 1.f }));
template <typename T, ARM_COMPUTE_REQUIRES_TA(arm_compute::utils::traits::is_floating_point<T>::value)>
void test_float_sqrt_boundary_value()
{
constexpr auto vector_size = uint32_t{ 16 };
auto data_type = DataType::F32;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
data_type = std::is_same<T, half>::value ? DataType::F16 : data_type;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
const auto boundary_value_vector = std::vector<T>
{
std::numeric_limits<T>::min(),
T(0),
std::numeric_limits<T>::epsilon(),
std::numeric_limits<T>::max(),
};
// the following size ensures that the whole logic (vector + left-over) to be tested
// using all boundary values iff boundary_value_vecotr.size() is smaller than vector_size.
auto shape = TensorShape{ vector_size + boundary_value_vector.size() };
auto info = ActivationLayerInfo{ ActivationLayerInfo::ActivationFunction::SQRT };
auto src = create_tensor<Tensor>(shape, data_type);
auto act = NEActivationLayer{};
act.configure(&src, nullptr, info);
src.allocator()->allocate();
library->fill_static_values(Accessor(src), boundary_value_vector);
act.run();
auto reference_src = SimpleTensor<T> { shape, data_type };
library->fill_static_values(reference_src, boundary_value_vector);
auto reference_dst = reference::activation_layer<T>(reference_src, info);
validate(Accessor(src), reference_dst, tolerance_float_sqrt);
}
} // namespace
TEST_SUITE(NEON)
TEST_SUITE(ActivationLayer)
/** Test case for memory injection in @ref cpu::CpuWinogradConv2d.
*
* Configure the operator once and inject memory at run-time in multiple executions.
*
* Checks performed in order:
* - Both runs compute the same output
*/
TEST_CASE(ActivationAPI, framework::DatasetMode::ALL)
{
acl::StatusCode err = acl::StatusCode::Success;
// Create context & Queue
acl::Context ctx(acl::Target::Cpu, &err);
ARM_COMPUTE_ASSERT(err == acl::StatusCode::Success);
acl::Queue queue(ctx, &err);
ARM_COMPUTE_ASSERT(err == acl::StatusCode::Success);
// Create activation operator
acl::TensorDescriptor src_info({ 2, 3 }, acl::DataType::Float32);
acl::TensorDescriptor dst_info({ 2, 3 }, acl::DataType::Float32);
acl::ActivationDesc desc{ AclRelu, 6.f, 0.f, false };
acl::Activation act(ctx, src_info, dst_info, desc, &err);
ARM_COMPUTE_ASSERT(err == acl::StatusCode::Success);
// Create tensors and feed
acl::Tensor src(ctx, src_info, &err);
ARM_COMPUTE_ASSERT(err == acl::StatusCode::Success);
acl::Tensor dst(ctx, dst_info, &err);
ARM_COMPUTE_ASSERT(err == acl::StatusCode::Success);
acl::TensorPack pack(ctx);
err = pack.add(src, ACL_SRC);
err = pack.add(dst, ACL_DST);
ARM_COMPUTE_ASSERT(err == acl::StatusCode::Success);
// Execute operator
err = act.run(queue, pack);
ARM_COMPUTE_ASSERT(err == acl::StatusCode::Success);
}
// *INDENT-OFF*
// clang-format off
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Mismatching data types
TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Mismatching shapes
}),
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16),
TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
})),
framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
})),
framework::dataset::make("Expected", { false, true, false})),
input_info, output_info, act_info, expected)
{
bool is_valid = bool(NEActivationLayer::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), act_info));
ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
}
DATA_TEST_CASE(KernelSelection, framework::DatasetMode::ALL, concat(concat(
combine(framework::dataset::make("CpuExt", std::string("NEON")),
framework::dataset::make("DataType", { DataType::F32,
DataType::F16,
DataType::QASYMM8,
DataType::QASYMM8_SIGNED,
DataType::QSYMM16
})),
combine(framework::dataset::make("CpuExt", std::string("SVE")),
framework::dataset::make("DataType", { DataType::F32,
DataType::F16,
}))),
combine(framework::dataset::make("CpuExt", std::string("SVE2")),
framework::dataset::make("DataType", { DataType::QASYMM8,
DataType::QASYMM8_SIGNED,
DataType::QSYMM16
}))),
cpu_ext, data_type)
{
using namespace cpu::kernels;
cpuinfo::CpuIsaInfo cpu_isa{};
cpu_isa.neon = (cpu_ext == "NEON");
cpu_isa.sve = (cpu_ext == "SVE");
cpu_isa.sve2 = (cpu_ext == "SVE2");
cpu_isa.fp16 = (data_type == DataType::F16);
const auto *selected_impl = CpuActivationKernel::get_implementation(DataTypeISASelectorData{data_type, cpu_isa}, cpu::KernelSelectionType::Preferred);
ARM_COMPUTE_ERROR_ON_NULLPTR(selected_impl);
std::string expected = lower_string(cpu_ext) + "_" + cpu_impl_dt(data_type) + "_activation";
std::string actual = selected_impl->name;
ARM_COMPUTE_EXPECT_EQUAL(expected, actual, framework::LogLevel::ERRORS);
}
// clang-format on
// *INDENT-ON*
template <typename T>
using NEActivationLayerFixture = ActivationValidationFixture<Tensor, Accessor, NEActivationLayer, T>;
TEST_SUITE(Float)
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_SUITE(FP16)
TEST_CASE(SqrtBoundaryValue, framework::DatasetMode::ALL)
{
test_float_sqrt_boundary_value<half>();
}
FIXTURE_DATA_TEST_CASE(RunSmall, NEActivationLayerFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ActivationDataset),
framework::dataset::make("DataType",
DataType::F16)))
{
// Validate output
validate(Accessor(_target), _reference, relative_tolerance(_data_type, _function), 0.f, absolute_tolerance(_data_type, _function));
}
TEST_SUITE_END() // FP16
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
TEST_SUITE(FP32)
TEST_CASE(SqrtBoundaryValue, framework::DatasetMode::ALL)
{
test_float_sqrt_boundary_value<float>();
}
FIXTURE_DATA_TEST_CASE(RunSmall, NEActivationLayerFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ActivationDataset), framework::dataset::make("DataType",
DataType::F32)))
{
// Validate output
validate(Accessor(_target), _reference, relative_tolerance(_data_type, _function), 0.f, absolute_tolerance(_data_type, _function));
}
TEST_SUITE_END() // FP32
TEST_SUITE_END() // Float
template <typename T>
using NEActivationLayerQuantizedFixture = ActivationValidationQuantizedFixture<Tensor, Accessor, NEActivationLayer, T>;
/** Input data sets. */
const auto QuantizedActivationFunctionsDataset = framework::dataset::make("ActivationFunction",
{
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::RELU,
ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH,
ActivationLayerInfo::ActivationFunction::LEAKY_RELU,
});
const auto QuantizedActivationDataset = combine(combine(framework::dataset::make("InPlace", { false }),
concat(QuantizedActivationFunctionsDataset, framework::dataset::make("ActivationFunction", ActivationLayerInfo::ActivationFunction::HARD_SWISH))),
framework::dataset::make("AlphaBeta", { 0.5f, 1.f }));
TEST_SUITE(Quantized)
TEST_SUITE(QASYMM8)
FIXTURE_DATA_TEST_CASE(RunSmall, NEActivationLayerQuantizedFixture<uint8_t>, framework::DatasetMode::ALL, combine(combine(combine(datasets::SmallShapes(), QuantizedActivationDataset),
framework::dataset::make("DataType",
DataType::QASYMM8)),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(0.1f, 128.0f) })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8(_function));
}
TEST_SUITE_END() // QASYMM8
TEST_SUITE(QASYMM8_SIGNED)
FIXTURE_DATA_TEST_CASE(RunSmall, NEActivationLayerQuantizedFixture<int8_t>, framework::DatasetMode::ALL, combine(combine(combine(datasets::SmallShapes(), QuantizedActivationDataset),
framework::dataset::make("DataType",
DataType::QASYMM8_SIGNED)),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(0.5f, 10.0f) })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8(_function));
}
TEST_SUITE_END() // QASYMM8_SIGNED
/** Input data sets. */
const auto Int16QuantizedActivationFunctionsDataset = framework::dataset::make("ActivationFunction", { ActivationLayerInfo::ActivationFunction::LOGISTIC,
ActivationLayerInfo::ActivationFunction::TANH
});
const auto Int16QuantizedActivationDataset = combine(combine(framework::dataset::make("InPlace", { false }), Int16QuantizedActivationFunctionsDataset),
framework::dataset::make("AlphaBeta", { 0.5f, 1.f }));
TEST_SUITE(QSYMM16)
FIXTURE_DATA_TEST_CASE(RunSmall, NEActivationLayerQuantizedFixture<int16_t>, framework::DatasetMode::ALL, combine(combine(combine(datasets::SmallShapes(), Int16QuantizedActivationDataset),
framework::dataset::make("DataType",
DataType::QSYMM16)),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f / 32768.f, 0.f) })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qsymm16);
}
TEST_SUITE_END() // QSYMM16
TEST_SUITE_END() // Quantized
TEST_SUITE_END() // ActivationLayer
TEST_SUITE_END() // Neon
} // namespace validation
} // namespace test
} // namespace arm_compute