blob: 03c1db82c883f22be35fe6c8b135563c84a0188b [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Framework.h"
#include "arm_compute/runtime/Scheduler.h"
#include "tests/framework/ParametersLibrary.h"
#include "tests/framework/TestFilter.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/runtime/CL/CLRuntimeContext.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#endif /* ARM_COMPUTE_CL */
#include <chrono>
#include <iostream>
#include <memory>
#include <sstream>
#include <type_traits>
namespace arm_compute
{
namespace test
{
std::unique_ptr<ParametersLibrary> parameters;
namespace framework
{
std::unique_ptr<InstrumentsInfo> instruments_info;
Framework::Framework()
: _test_filter(nullptr)
{
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::WALL_CLOCK_TIMESTAMPS, ScaleFactor::NONE), Instrument::make_instrument<WallClockTimestamps, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::WALL_CLOCK_TIMESTAMPS, ScaleFactor::TIME_MS),
Instrument::make_instrument<WallClockTimestamps, ScaleFactor::TIME_MS>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::WALL_CLOCK_TIMESTAMPS, ScaleFactor::TIME_S),
Instrument::make_instrument<WallClockTimestamps, ScaleFactor::TIME_S>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::WALL_CLOCK_TIMER, ScaleFactor::NONE), Instrument::make_instrument<WallClockTimer, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::WALL_CLOCK_TIMER, ScaleFactor::TIME_MS), Instrument::make_instrument<WallClockTimer, ScaleFactor::TIME_MS>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::WALL_CLOCK_TIMER, ScaleFactor::TIME_S), Instrument::make_instrument<WallClockTimer, ScaleFactor::TIME_S>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::SCHEDULER_TIMESTAMPS, ScaleFactor::NONE), Instrument::make_instrument<SchedulerTimestamps, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::SCHEDULER_TIMESTAMPS, ScaleFactor::TIME_MS),
Instrument::make_instrument<SchedulerTimestamps, ScaleFactor::TIME_MS>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::SCHEDULER_TIMESTAMPS, ScaleFactor::TIME_S),
Instrument::make_instrument<SchedulerTimestamps, ScaleFactor::TIME_S>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::SCHEDULER_TIMER, ScaleFactor::NONE), Instrument::make_instrument<SchedulerTimer, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::SCHEDULER_TIMER, ScaleFactor::TIME_MS), Instrument::make_instrument<SchedulerTimer, ScaleFactor::TIME_MS>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::SCHEDULER_TIMER, ScaleFactor::TIME_S), Instrument::make_instrument<SchedulerTimer, ScaleFactor::TIME_S>);
#ifdef PMU_ENABLED
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::PMU, ScaleFactor::NONE), Instrument::make_instrument<PMUCounter, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::PMU, ScaleFactor::SCALE_1K), Instrument::make_instrument<PMUCounter, ScaleFactor::SCALE_1K>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::PMU, ScaleFactor::SCALE_1M), Instrument::make_instrument<PMUCounter, ScaleFactor::SCALE_1M>);
#endif /* PMU_ENABLED */
#ifdef MALI_ENABLED
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::MALI, ScaleFactor::NONE), Instrument::make_instrument<MaliCounter, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::MALI, ScaleFactor::SCALE_1K), Instrument::make_instrument<MaliCounter, ScaleFactor::SCALE_1K>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::MALI, ScaleFactor::SCALE_1M), Instrument::make_instrument<MaliCounter, ScaleFactor::SCALE_1M>);
#endif /* MALI_ENABLED */
#ifdef ARM_COMPUTE_CL
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMESTAMPS, ScaleFactor::NONE), Instrument::make_instrument<OpenCLTimestamps, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMESTAMPS, ScaleFactor::TIME_US), Instrument::make_instrument<OpenCLTimestamps, ScaleFactor::TIME_US>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMESTAMPS, ScaleFactor::TIME_MS), Instrument::make_instrument<OpenCLTimestamps, ScaleFactor::TIME_MS>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMESTAMPS, ScaleFactor::TIME_S), Instrument::make_instrument<OpenCLTimestamps, ScaleFactor::TIME_S>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMER, ScaleFactor::NONE), Instrument::make_instrument<OpenCLTimer, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMER, ScaleFactor::TIME_US), Instrument::make_instrument<OpenCLTimer, ScaleFactor::TIME_US>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMER, ScaleFactor::TIME_MS), Instrument::make_instrument<OpenCLTimer, ScaleFactor::TIME_MS>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_TIMER, ScaleFactor::TIME_S), Instrument::make_instrument<OpenCLTimer, ScaleFactor::TIME_S>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_MEMORY_USAGE, ScaleFactor::NONE), Instrument::make_instrument<OpenCLMemoryUsage, ScaleFactor::NONE>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_MEMORY_USAGE, ScaleFactor::SCALE_1K),
Instrument::make_instrument<OpenCLMemoryUsage, ScaleFactor::SCALE_1K>);
_available_instruments.emplace(std::pair<InstrumentType, ScaleFactor>(InstrumentType::OPENCL_MEMORY_USAGE, ScaleFactor::SCALE_1M),
Instrument::make_instrument<OpenCLMemoryUsage, ScaleFactor::SCALE_1M>);
#endif /* ARM_COMPUTE_CL */
instruments_info = std::make_unique<InstrumentsInfo>();
}
std::set<InstrumentsDescription> Framework::available_instruments() const
{
std::set<InstrumentsDescription> types;
for(const auto &instrument : _available_instruments)
{
types.emplace(instrument.first);
}
return types;
}
std::map<TestResult::Status, int> Framework::count_test_results() const
{
std::map<TestResult::Status, int> counts;
for(const auto &test : _test_results)
{
++counts[test.second.status];
}
return counts;
}
Framework &Framework::get()
{
static Framework instance;
return instance;
}
void Framework::init(const FrameworkConfig &config)
{
_test_filter.reset(new TestFilter(config.mode, config.name_filter, config.id_filter));
_num_iterations = config.num_iterations;
_log_level = config.log_level;
_cooldown_sec = config.cooldown_sec;
_configure_only = config.configure_only;
_instruments = std::set<framework::InstrumentsDescription>(std::begin(config.instruments), std::end(config.instruments));
}
std::string Framework::current_suite_name() const
{
return join(_test_suite_name.cbegin(), _test_suite_name.cend(), "/");
}
void Framework::push_suite(std::string name)
{
_test_suite_name.emplace_back(std::move(name));
}
void Framework::pop_suite()
{
_test_suite_name.pop_back();
}
void Framework::add_test_info(std::string info)
{
_test_info.emplace_back(std::move(info));
}
void Framework::clear_test_info()
{
_test_info.clear();
}
bool Framework::has_test_info() const
{
return !_test_info.empty();
}
void Framework::print_test_info(std::ostream &os) const
{
if(!_test_info.empty())
{
os << "CONTEXT:\n";
for(const auto &str : _test_info)
{
os << " " << str << "\n";
}
}
}
template <typename F>
void Framework::func_on_all_printers(F &&func)
{
std::for_each(std::begin(_printers), std::end(_printers), func);
}
void Framework::log_test_start(const TestInfo &info)
{
if(_log_level >= LogLevel::TESTS)
{
func_on_all_printers([&](Printer * p)
{
p->print_test_header(info);
});
}
}
void Framework::log_test_skipped(const TestInfo &info)
{
static_cast<void>(info);
}
void Framework::log_test_end(const TestInfo &info)
{
if(_log_level >= LogLevel::MEASUREMENTS)
{
func_on_all_printers([&](Printer * p)
{
p->print_profiler_header(_test_results.at(info).header_data);
p->print_measurements(_test_results.at(info).measurements);
});
}
if(_log_level >= LogLevel::TESTS)
{
func_on_all_printers([](Printer * p)
{
p->print_test_footer();
});
}
}
void Framework::log_failed_expectation(const TestError &error)
{
ARM_COMPUTE_ERROR_ON(_current_test_info == nullptr);
ARM_COMPUTE_ERROR_ON(_current_test_result == nullptr);
const bool is_expected_failure = _current_test_info->status == TestCaseFactory::Status::EXPECTED_FAILURE;
if(_log_level >= error.level())
{
func_on_all_printers([&](Printer * p)
{
p->print_error(error, is_expected_failure);
});
}
_current_test_result->status = TestResult::Status::FAILED;
}
void Framework::log_info(const std::string &info)
{
if(_log_level >= LogLevel::DEBUG)
{
func_on_all_printers([&](Printer * p)
{
p->print_info(info);
});
}
}
int Framework::num_iterations() const
{
return _num_iterations;
}
void Framework::set_num_iterations(int num_iterations)
{
_num_iterations = num_iterations;
}
void Framework::set_throw_errors(bool throw_errors)
{
_throw_errors = throw_errors;
}
bool Framework::throw_errors() const
{
return _throw_errors;
}
void Framework::set_stop_on_error(bool stop_on_error)
{
_stop_on_error = stop_on_error;
}
bool Framework::stop_on_error() const
{
return _stop_on_error;
}
void Framework::set_error_on_missing_assets(bool error_on_missing_assets)
{
_error_on_missing_assets = error_on_missing_assets;
}
bool Framework::error_on_missing_assets() const
{
return _error_on_missing_assets;
}
void Framework::run_test(const TestInfo &info, TestCaseFactory &test_factory)
{
if(test_factory.status() == TestCaseFactory::Status::DISABLED)
{
log_test_skipped(info);
set_test_result(info, TestResult(TestResult::Status::DISABLED));
return;
}
log_test_start(info);
Profiler profiler = get_profiler();
TestResult result(TestResult::Status::NOT_RUN);
_current_test_info = &info;
_current_test_result = &result;
if(_log_level >= LogLevel::ERRORS)
{
func_on_all_printers([](Printer * p)
{
p->print_errors_header();
});
}
const bool is_expected_failure = info.status == TestCaseFactory::Status::EXPECTED_FAILURE;
try
{
std::unique_ptr<TestCase> test_case = test_factory.make();
try
{
profiler.test_start();
test_case->do_setup();
for(int i = 0; i < _num_iterations; ++i)
{
//Start the profiler if:
//- there is only one iteration
//- it's not the first iteration of a multi-iterations run.
//
//Reason: if the CLTuner is enabled then the first run will be really messy
//as each kernel will be executed several times, messing up the instruments like OpenCL timers.
if(_num_iterations == 1 || i != 0)
{
profiler.start();
}
test_case->do_run();
test_case->do_sync();
if(_num_iterations == 1 || i != 0)
{
profiler.stop();
}
}
test_case->do_teardown();
profiler.test_stop();
// Change status to success if no error has happend
if(result.status == TestResult::Status::NOT_RUN)
{
result.status = TestResult::Status::SUCCESS;
}
}
catch(const FileNotFound &error)
{
profiler.test_stop();
if(_error_on_missing_assets)
{
if(_log_level >= LogLevel::ERRORS)
{
TestError test_error(error.what(), LogLevel::ERRORS);
func_on_all_printers([&](Printer * p)
{
p->print_error(test_error, is_expected_failure);
});
}
result.status = TestResult::Status::FAILED;
if(_throw_errors)
{
throw;
}
}
else
{
if(_log_level >= LogLevel::DEBUG)
{
func_on_all_printers([&](Printer * p)
{
p->print_info(error.what());
});
}
result.status = TestResult::Status::NOT_RUN;
}
}
catch(const TestError &error)
{
profiler.test_stop();
if(_log_level >= error.level())
{
func_on_all_printers([&](Printer * p)
{
p->print_error(error, is_expected_failure);
});
}
result.status = TestResult::Status::FAILED;
if(_throw_errors)
{
throw;
}
}
#ifdef ARM_COMPUTE_CL
catch(const ::cl::Error &error)
{
profiler.test_stop();
if(_log_level >= LogLevel::ERRORS)
{
std::stringstream stream;
stream << "Error code: " << error.err();
TestError test_error(error.what(), LogLevel::ERRORS, stream.str());
func_on_all_printers([&](Printer * p)
{
p->print_error(test_error, is_expected_failure);
});
}
result.status = TestResult::Status::FAILED;
if(_throw_errors)
{
throw;
}
}
#endif /* ARM_COMPUTE_CL */
catch(const std::exception &error)
{
profiler.test_stop();
if(_log_level >= LogLevel::ERRORS)
{
func_on_all_printers([&](Printer * p)
{
p->print_error(error, is_expected_failure);
});
}
result.status = TestResult::Status::CRASHED;
if(_throw_errors)
{
throw;
}
}
catch(...)
{
profiler.test_stop();
if(_log_level >= LogLevel::ERRORS)
{
func_on_all_printers([&](Printer * p)
{
p->print_error(TestError("Received unknown exception"), is_expected_failure);
});
}
result.status = TestResult::Status::CRASHED;
if(_throw_errors)
{
throw;
}
}
}
catch(const std::exception &error)
{
if(_log_level >= LogLevel::ERRORS)
{
func_on_all_printers([&](Printer * p)
{
p->print_error(error, is_expected_failure);
});
}
result.status = TestResult::Status::CRASHED;
if(_throw_errors)
{
throw;
}
}
catch(...)
{
if(_log_level >= LogLevel::ERRORS)
{
func_on_all_printers([&](Printer * p)
{
p->print_error(TestError("Received unknown exception"), is_expected_failure);
});
}
result.status = TestResult::Status::CRASHED;
if(_throw_errors)
{
throw;
}
}
if(_log_level >= LogLevel::ERRORS)
{
func_on_all_printers([](Printer * p)
{
p->print_errors_footer();
});
}
_current_test_info = nullptr;
_current_test_result = nullptr;
if(result.status == TestResult::Status::FAILED)
{
if(info.status == TestCaseFactory::Status::EXPECTED_FAILURE)
{
result.status = TestResult::Status::EXPECTED_FAILURE;
}
}
if(result.status == TestResult::Status::FAILED || result.status == TestResult::Status::CRASHED)
{
if(_stop_on_error)
{
throw std::runtime_error("Abandon on first error.");
}
}
result.header_data = profiler.header();
result.measurements = profiler.measurements();
set_test_result(info, result);
log_test_end(info);
}
bool Framework::run()
{
// Clear old test results
_test_results.clear();
if(_log_level >= LogLevel::TESTS)
{
func_on_all_printers([](Printer * p)
{
p->print_run_header();
});
}
const std::chrono::time_point<std::chrono::high_resolution_clock> start = std::chrono::high_resolution_clock::now();
int id = 0;
int id_run_test = 0;
for(auto &test_factory : _test_factories)
{
const std::string test_case_name = test_factory->name();
const TestInfo test_info{ id, test_case_name, test_factory->mode(), test_factory->status() };
if(_test_filter->is_selected(test_info))
{
#ifdef ARM_COMPUTE_CL
// Every 100 tests, reset the OpenCL context to release the allocated memory
if(opencl_is_available() && (id_run_test % 100) == 0)
{
auto ctx_properties = CLScheduler::get().context().getInfo<CL_CONTEXT_PROPERTIES>(nullptr);
auto queue_properties = CLScheduler::get().queue().getInfo<CL_QUEUE_PROPERTIES>(nullptr);
cl::Context new_ctx = cl::Context(CL_DEVICE_TYPE_DEFAULT, ctx_properties.data());
cl::CommandQueue new_queue = cl::CommandQueue(new_ctx, CLKernelLibrary::get().get_device(), queue_properties);
CLKernelLibrary::get().clear_programs_cache();
CLScheduler::get().set_context(new_ctx);
CLScheduler::get().set_queue(new_queue);
}
#endif // ARM_COMPUTE_CL
run_test(test_info, *test_factory);
++id_run_test;
// Run test delay
sleep_in_seconds(_cooldown_sec);
}
++id;
}
const std::chrono::time_point<std::chrono::high_resolution_clock> end = std::chrono::high_resolution_clock::now();
if(_log_level >= LogLevel::TESTS)
{
func_on_all_printers([](Printer * p)
{
p->print_run_footer();
});
}
auto runtime = std::chrono::duration_cast<std::chrono::seconds>(end - start);
std::map<TestResult::Status, int> results = count_test_results();
if(_log_level > LogLevel::NONE)
{
std::cout << "Executed " << _test_results.size() << " test(s) ("
<< results[TestResult::Status::SUCCESS] << " passed, "
<< results[TestResult::Status::EXPECTED_FAILURE] << " expected failures, "
<< results[TestResult::Status::FAILED] << " failed, "
<< results[TestResult::Status::CRASHED] << " crashed, "
<< results[TestResult::Status::DISABLED] << " disabled) in " << runtime.count() << " second(s)\n";
}
int num_successful_tests = results[TestResult::Status::SUCCESS] + results[TestResult::Status::EXPECTED_FAILURE] + results[TestResult::Status::DISABLED];
return (static_cast<unsigned int>(num_successful_tests) == _test_results.size());
}
void Framework::set_test_result(TestInfo info, TestResult result)
{
_test_results.emplace(std::move(info), std::move(result));
}
void Framework::print_test_results(Printer &printer) const
{
printer.print_run_header();
for(const auto &test : _test_results)
{
printer.print_test_header(test.first);
printer.print_profiler_header(test.second.header_data);
printer.print_measurements(test.second.measurements);
printer.print_test_footer();
}
printer.print_run_footer();
}
Profiler Framework::get_profiler() const
{
Profiler profiler;
const bool all_instruments = std::any_of(
_instruments.begin(),
_instruments.end(),
[](InstrumentsDescription type) -> bool { return type.first == InstrumentType::ALL; });
auto is_selected = [&](InstrumentsDescription instrument) -> bool
{
return std::find_if(_instruments.begin(), _instruments.end(), [&](InstrumentsDescription type) -> bool {
const auto group = static_cast<InstrumentType>(static_cast<uint64_t>(type.first) & 0xFF00);
return (group == instrument.first) && (instrument.second == type.second);
})
!= _instruments.end();
};
for(const auto &instrument : _available_instruments)
{
if(all_instruments || is_selected(instrument.first))
{
profiler.add(instrument.second());
}
}
return profiler;
}
void Framework::add_printer(Printer *printer)
{
_printers.push_back(printer);
}
std::vector<TestInfo> Framework::test_infos() const
{
std::vector<TestInfo> ids;
int id = 0;
for(const auto &factory : _test_factories)
{
const TestInfo test_info{ id, factory->name(), factory->mode(), factory->status() };
if(_test_filter->is_selected(test_info))
{
ids.emplace_back(std::move(test_info));
}
++id;
}
return ids;
}
LogLevel Framework::log_level() const
{
return _log_level;
}
void Framework::set_instruments_info(InstrumentsInfo instr_info)
{
ARM_COMPUTE_ERROR_ON(instruments_info == nullptr);
*instruments_info = instr_info;
}
bool Framework::configure_only() const
{
return _configure_only;
}
bool Framework::new_fixture_call() const
{
return _new_fixture_call;
}
void Framework::set_new_fixture_call(bool val)
{
_new_fixture_call = val;
}
} // namespace framework
} // namespace test
} // namespace arm_compute