blob: 5284fce806f1b00d8d617d6c377d34f540fc2b5e [file] [log] [blame]
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph/mutators/NodeFusionMutator.h"
#include "arm_compute/graph/GraphBuilder.h"
#include "arm_compute/graph/Logger.h"
#include "arm_compute/graph/Utils.h"
#include "arm_compute/graph/backends/BackendRegistry.h"
#include "arm_compute/graph/nodes/FusedConvolutionBatchNormalizationNode.h"
#include "arm_compute/graph/nodes/FusedConvolutionBatchNormalizationWithPostOpsNode.h"
#include "arm_compute/graph/nodes/FusedConvolutionWithPostOpNode.h"
#include "arm_compute/graph/nodes/Nodes.h"
#include "src/graph/mutators/MutatorUtils.h"
#include "support/Cast.h"
#include <list>
#include <set>
namespace arm_compute
{
namespace graph
{
namespace detail
{
void transfer_driving_nodes_and_remove_old_node(Graph &g, INode *new_node, INode *old_node, bool add_output_tensor)
{
if(new_node == nullptr || old_node == nullptr)
{
return;
}
// Get driving nodes of last fusable node
std::vector<NodeIdxPair> last_driving_nodes = get_driving_nodes(*old_node);
// Extract last fusable node accessor if any
if(old_node->output(0) == nullptr)
{
return;
}
auto old_node_accessor = old_node->output(0)->extract_accessor();
// Remove node
g.remove_node(old_node->id());
// Update fused node outputs
for(auto &driving_node : last_driving_nodes)
{
g.add_connection(new_node->id(), 0, driving_node.node_id, driving_node.index);
if(add_output_tensor)
{
configure_tensor(new_node->output(0));
}
}
// Update accessor to fused node
new_node->output(0)->set_accessor(std::move(old_node_accessor));
}
void fuse_convolution_with_batch_normalization(Graph &g, const Edge *output_edge)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<ConvolutionLayerNode *>(output_edge->producer());
auto *bn_node = arm_compute::utils::cast::polymorphic_downcast<BatchNormalizationLayerNode *>(output_edge->consumer());
// Not fusing if number of groups is greater than 1
if(conv_node->num_groups() > 1)
{
return;
}
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing convolution node with ID : " << output_edge->producer_id()
<< " with BatchNormalization Layer node with ID : " << output_edge->consumer_id() << std::endl);
// Prevent fusion if fused node has an output accessor
if(conv_node->output(0)->accessor() == nullptr)
{
const Target assigned_target = conv_node->assigned_target();
// Extract conv inputs
const auto conv_input_id = conv_node->input_edge(0)->producer_id();
const auto conv_weights_id = conv_node->input_edge(1)->producer_id();
const auto conv_info = conv_node->convolution_info();
const auto conv_method = conv_node->convolution_method();
const auto num_groups = conv_node->num_groups();
const auto act_info = bn_node->fused_activation();
FastMathHint fast_math_hint = conv_node->fast_math_hint();
// Extract bn inputs
const auto bn_mean_id = bn_node->input_edge(1)->producer_id();
const auto bn_var_id = bn_node->input_edge(2)->producer_id();
const auto epsilon = bn_node->epsilon();
// Create the fused node
const NodeID fused_id = g.add_node<FusedConvolutionBatchNormalizationNode>(epsilon, conv_info, num_groups, conv_method, fast_math_hint, act_info);
if(conv_node->input_edge(2) != nullptr)
{
auto conv_bias_id = conv_node->input_edge(2)->producer_id();
g.add_connection(conv_bias_id, 0, fused_id, 2);
}
// Add connections from the conv/batch_norm inputs to the fused node
g.add_connection(conv_input_id, 0, fused_id, 0);
g.add_connection(conv_weights_id, 0, fused_id, 1);
g.add_connection(bn_mean_id, 0, fused_id, 3);
g.add_connection(bn_var_id, 0, fused_id, 4);
if(bn_node->input_edge(3) != nullptr)
{
const auto bn_beta_id = bn_node->input_edge(3)->producer_id();
g.add_connection(bn_beta_id, 0, fused_id, 5);
}
if(bn_node->input_edge(4) != nullptr)
{
const auto bn_gamma_id = bn_node->input_edge(4)->producer_id();
g.add_connection(bn_gamma_id, 0, fused_id, 6);
}
auto fused_node = g.node(fused_id);
auto bn_node_name = bn_node->name();
transfer_driving_nodes_and_remove_old_node(g, fused_node, bn_node, true);
fused_node->set_assigned_target(assigned_target);
fused_node->set_common_node_parameters(NodeParams{ conv_node->name() + "+" + bn_node_name, assigned_target });
// Remove convolution node
g.remove_node(conv_node->id());
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution with batch normalization due to the presence of an output accessor\n");
}
}
void fuse_depthwise_convolution_with_batch_normalization(Graph &g, const Edge *output_edge)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *depth_conv_node = arm_compute::utils::cast::polymorphic_downcast<DepthwiseConvolutionLayerNode *>(output_edge->producer());
auto *bn_node = arm_compute::utils::cast::polymorphic_downcast<BatchNormalizationLayerNode *>(output_edge->consumer());
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing depthwise convolution node with ID : " << output_edge->producer_id()
<< " with BatchNormalization Layer node with ID : " << output_edge->consumer_id() << std::endl);
// Prevent fusion if fused node has an output accessor
if(depth_conv_node->output(0)->accessor() == nullptr)
{
const Target assigned_target = depth_conv_node->assigned_target();
// Extract conv inputs
const auto depth_conv_input_id = depth_conv_node->input_edge(0)->producer_id();
const auto conv_weights_id = depth_conv_node->input_edge(1)->producer_id();
const auto conv_info = depth_conv_node->convolution_info();
const auto depth_conv_method = depth_conv_node->depthwise_convolution_method();
const auto depth_multiplier = depth_conv_node->depth_multiplier();
const auto act_info = bn_node->fused_activation();
// Extract bn inputs
const auto bn_mean_id = bn_node->input_edge(1)->producer_id();
const auto bn_var_id = bn_node->input_edge(2)->producer_id();
const auto bn_beta_id = bn_node->input_edge(3)->producer_id();
const auto bn_gamma_id = bn_node->input_edge(4)->producer_id();
const auto epsilon = bn_node->epsilon();
// Create the fused node
const NodeID fused_id = g.add_node<FusedDepthwiseConvolutionBatchNormalizationNode>(epsilon, conv_info, depth_multiplier, depth_conv_method, act_info);
if(depth_conv_node->input_edge(2) != nullptr)
{
const auto conv_bias_id = depth_conv_node->input_edge(2)->producer_id();
g.add_connection(conv_bias_id, 0, fused_id, 2);
}
// Add connections from the conv/batch_norm inputs to the fused node
g.add_connection(depth_conv_input_id, 0, fused_id, 0);
g.add_connection(conv_weights_id, 0, fused_id, 1);
g.add_connection(bn_mean_id, 0, fused_id, 3);
g.add_connection(bn_var_id, 0, fused_id, 4);
g.add_connection(bn_beta_id, 0, fused_id, 5);
g.add_connection(bn_gamma_id, 0, fused_id, 6);
auto fused_node = g.node(fused_id);
auto bn_node_name = bn_node->name();
transfer_driving_nodes_and_remove_old_node(g, fused_node, bn_node, true);
fused_node->set_assigned_target(assigned_target);
fused_node->set_common_node_parameters(NodeParams{ depth_conv_node->name() + "+" + bn_node_name, assigned_target });
// Remove convolution node
g.remove_node(depth_conv_node->id());
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of depthwise convolution with batch normalization due to the presence of an output accessor\n");
}
}
template <typename N>
void fuse_node_with_activation(Graph &g, const Edge *output_edge, const std::set<Activation> &supported_fused_activations)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *n_node = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->producer());
auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(output_edge->consumer());
ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr || n_node->output(0) == nullptr);
// Check if activation is supported for fusion
if(supported_fused_activations.count(act_node->activation_info().activation()) == 0)
{
return;
}
// EltwiseLayerNode can only be fused when dataype is float
if(n_node->type() == NodeType::EltwiseLayer && !is_data_type_float(n_node->output(0)->desc().data_type))
{
return;
}
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing node with ID : " << output_edge->producer_id()
<< " with Activation Layer node with ID : " << output_edge->consumer_id() << std::endl);
// Prevent fusion if fused node has an output accessor
if(n_node->output(0)->accessor() == nullptr)
{
// Set activation info to fused node
n_node->set_fused_activation(act_node->activation_info());
transfer_driving_nodes_and_remove_old_node(g, n_node, act_node, false);
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of node with activation due to the presence of an output accessor\n");
}
}
template <typename N>
void fuse_pad_with_convolution(Graph &g, const Edge *output_edge)
{
auto *pad_node = arm_compute::utils::cast::polymorphic_downcast<PadLayerNode *>(output_edge->producer());
auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->consumer());
const Edge *input_edge = pad_node->input_edge(0);
if(input_edge != nullptr && input_edge->tensor() != nullptr && pad_node->output(0)->accessor() == nullptr
&& pad_node->pad_value().get<float>() == 0.0)
{
const DataLayout layout = input_edge->tensor()->desc().layout;
const PaddingList padding_list = pad_node->padding();
const unsigned int height_index = get_dimension_idx(layout, DataLayoutDimension::HEIGHT);
const unsigned int width_index = get_dimension_idx(layout, DataLayoutDimension::WIDTH);
const PaddingInfo pad_w = width_index < padding_list.size() ? padding_list[width_index] : PaddingInfo(0, 0);
const PaddingInfo pad_h = height_index < padding_list.size() ? padding_list[height_index] : PaddingInfo(0, 0);
if(is_padding_in_height_or_width(layout, padding_list))
{
// Add paddings to the convolution node
const PadStrideInfo conv_info = conv_node->convolution_info();
const PadStrideInfo new_conv_info(
conv_info.stride().first,
conv_info.stride().second,
conv_info.pad_left() + pad_w.first,
conv_info.pad_right() + pad_w.second,
conv_info.pad_top() + pad_h.first,
conv_info.pad_bottom() + pad_h.second,
conv_info.round());
conv_node->set_convolution_info(new_conv_info);
// Update drivers of the convolution node
std::vector<NodeIdxPair> pad_driver_nodes = get_driver_nodes(*pad_node);
g.remove_node(pad_node->id());
// Update fused node inputs
for(auto &driver_node : pad_driver_nodes)
{
g.add_connection(driver_node.node_id, driver_node.index, conv_node->id(), 0);
}
}
}
}
template <typename N1, typename N2, typename F, typename... Args>
void fuse_layer(Graph &g, std::function<bool(INode &)> const &prec, const F fuse_fcn, Args &&... optional_arguments)
{
// Note that fused nodes may be added to the end of the node list.
// Instead of only looping over the original list of nodes, we loop over the current node list which could be growing.
// This is intentional as it probes the newly added fused nodes for further fusing opportunities.
for(unsigned int i = 0; i < g.nodes().size(); ++i)
{
auto node = g.node(i);
// Check if the node is of type N1 and not a branching node
if(node && node->type() == N1::node_type && node->output_edges().size() == 1)
{
const auto output_edge_id = *node->output_edges().begin();
const auto output_edge = g.edge(output_edge_id);
// Check if following node is a type N2 node
if((output_edge != nullptr) && (output_edge->consumer() != nullptr) && (output_edge->consumer()->type() == N2::node_type) && prec(*output_edge->producer()))
{
fuse_fcn(g, output_edge, optional_arguments...);
}
}
}
}
/** Check valid combinations:
*
* | Main operator | Post operators |
* |:--------------|:---------------------------|
* |conv | add |
* |conv | act + add |
* |conv | add + act |
* |conv | act + add + act |
*
*/
#define MAX_VALIDE_COMBINATION 4
#define MAX_POST_OP_NUM 3
NodeType valide_post_op_type[MAX_VALIDE_COMBINATION][MAX_POST_OP_NUM] = { { EltwiseLayerNode::node_type },
{ EltwiseLayerNode::node_type, ActivationLayerNode::node_type },
{ ActivationLayerNode::node_type, EltwiseLayerNode::node_type },
{ ActivationLayerNode::node_type, EltwiseLayerNode::node_type, ActivationLayerNode::node_type }
};
bool check_post_op_type(NodeType *post_op_type, int len)
{
if(len > MAX_POST_OP_NUM || len <= 0)
{
return false;
}
bool found = false;
for(int i = 0; i < MAX_VALIDE_COMBINATION; ++i)
{
for(int j = 0; j < len; ++j)
{
if(post_op_type[j] != valide_post_op_type[i][j])
{
found = false;
break;
}
found = true;
}
if(found)
break;
}
return found;
}
void fuse_convolution_with_post_op(Graph &g, INode *fused_node, std::list<INode *> post_op_node_list, int prev_op_dst_pos)
{
unsigned int op_idx = 0;
// Fuse post operators with conv
for(const auto &post_op : post_op_node_list)
{
switch(post_op->type())
{
case EltwiseLayerNode::node_type:
{
auto *eltwise_node = arm_compute::utils::cast::polymorphic_downcast<EltwiseLayerNode *>(post_op);
ARM_COMPUTE_ERROR_ON(eltwise_node->output(0) == nullptr);
fused_node->post_op_info_list().push_back(std::make_unique<ConvPostOpInfoEltwiseAdd>(prev_op_dst_pos, eltwise_node->convert_policy()));
ARM_COMPUTE_LOG_GRAPH_VERBOSE(" with Elementwise Layer node with ID : " << post_op->id());
break;
}
case ActivationLayerNode::node_type:
{
auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(post_op);
ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr);
fused_node->post_op_info_list().push_back(std::make_unique<ConvPostOpInfoActivation>(act_node->activation_info()));
ARM_COMPUTE_LOG_GRAPH_VERBOSE(" with Activation Layer node with ID : " << post_op->id());
break;
}
default:
{
break;
}
}
if(op_idx == post_op_node_list.size() - 1) // last fusable node
{
transfer_driving_nodes_and_remove_old_node(g, fused_node, post_op, true);
}
else
{
// Remove node
g.remove_node(post_op->id());
}
op_idx++;
}
}
std::list<INode *> get_post_op_list(Graph &g, int &eltwise_operand_id, int &prev_op_dst_pos, unsigned int conv_node_id, const std::set<Activation> &supported_fused_activations)
{
std::list<INode *> post_op_node_list = {};
NodeID prev_op_dst_id = conv_node_id;
NodeType post_op_type_list[3] = { NodeType::Dummy, NodeType::Dummy, NodeType::Dummy };
int post_op_idx = 0;
// Get list of the connected nodes
auto current_node = g.node(conv_node_id);
while(post_op_node_list.size() < 3)
{
// This convolution node must have only one output edge, otherwise this function would not have been called
auto current_output_edge_id = current_node->output_edges().begin();
auto current_output_edge = g.edge(*current_output_edge_id);
auto post_op_node = current_output_edge->consumer();
bool fusable_post_op = false;
if(post_op_node != nullptr && post_op_node->output_edges().size() > 0)
{
switch(post_op_node->type())
{
case EltwiseLayerNode::node_type:
{
auto *eltwise_node = arm_compute::utils::cast::polymorphic_downcast<EltwiseLayerNode *>(post_op_node);
ARM_COMPUTE_ERROR_ON(eltwise_node->output(0) == nullptr);
if(eltwise_node->output(0)->accessor() == nullptr)
{
post_op_node_list.push_back(post_op_node);
fusable_post_op = true;
post_op_type_list[post_op_idx++] = eltwise_node->type();
// Extract elementwise inputs
const auto eltwise_input_id_0 = eltwise_node->input_edge(0)->producer_id();
const auto eltwise_input_id_1 = eltwise_node->input_edge(1)->producer_id();
if(eltwise_input_id_0 == prev_op_dst_id)
{
eltwise_operand_id = eltwise_input_id_1;
prev_op_dst_pos = 0;
}
else if(eltwise_input_id_1 == prev_op_dst_id)
{
eltwise_operand_id = eltwise_input_id_0;
prev_op_dst_pos = 1;
}
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with elementwise due to the presence of an output accessor\n");
}
break;
}
case ActivationLayerNode::node_type:
{
auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(post_op_node);
ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr);
// Check if activation is supported for fusion
if(supported_fused_activations.count(act_node->activation_info().activation()) == 0)
{
break;
}
if(act_node->output(0)->accessor() == nullptr)
{
post_op_node_list.push_back(post_op_node);
fusable_post_op = true;
post_op_type_list[post_op_idx++] = act_node->type();
prev_op_dst_id = act_node->id();
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to the presence of an output accessor\n");
}
break;
}
default:
{
break;
}
}
// Check if the node is not a branching node and current node is fusable
if(post_op_node->output_edges().size() == 1 && fusable_post_op == true)
{
current_node = post_op_node;
}
else
{
break;
}
}
}
// Check whether it's valid post op list
if(post_op_node_list.size() > 0)
{
bool fuse_with_post_op = check_post_op_type(post_op_type_list, post_op_node_list.size());
if(!fuse_with_post_op)
{
post_op_node_list.clear();
}
}
return post_op_node_list;
}
/** Fuse below operators:
*
* | Main operator | Post operators |
* |:--------------|:---------------------------|
* |conv | add |
* |conv | act + add |
* |conv | add + act |
* |conv | act + add + act |
*
* Notes: currently, only GEMM supports fusion with post operator
*/
void fuse_convolution_with_post_ops(Graph &g, const Edge *output_edge, unsigned int conv_node_id, const std::set<Activation> &supported_fused_activations)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<ConvolutionLayerNode *>(output_edge->producer());
ARM_COMPUTE_ERROR_ON(conv_node->output(0) == nullptr);
const ConvolutionMethod conv_algorithm = conv_node->convolution_method();
if(conv_algorithm != ConvolutionMethod::GEMM)
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to non GEMM convolution\n");
return;
}
// Prevent fusion if fused node has an output accessor
if(conv_node->output(0)->accessor() == nullptr)
{
// If data type is FP32/FP16, data layout is NHWC, and filter size is 1x1, fuse convolution with post op, as Conv1x1 always leads to GEMM.
const Edge *input_edge = conv_node->input_edge(1);
if(input_edge != nullptr && input_edge->tensor() != nullptr)
{
const DataLayout data_layout = input_edge->tensor()->desc().layout;
const DataType data_type = input_edge->tensor()->desc().data_type;
const TensorShape tensor_shape = input_edge->tensor()->desc().shape;
if((data_layout != DataLayout::NHWC) || (is_data_type_float(data_type) == false) || (tensor_shape.y() != 1) || (tensor_shape.z() != 1))
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to non GEMM convolution\n");
return;
}
}
else
{
return;
}
// Get post op list
int eltwise_operand_id = 0;
int prev_op_dst_pos = 0; // Previous operator dst's postion in current operator
std::list<INode *> post_op_node_list = get_post_op_list(g, eltwise_operand_id, prev_op_dst_pos, conv_node_id, supported_fused_activations);
if(post_op_node_list.size() == 0)
{
return;
}
else // Do convolution fusion with post op if there're one(elementwise), two or more operators
{
const Target assigned_target = conv_node->assigned_target();
// Extract conv inputs
const auto conv_input_id = conv_node->input_edge(0)->producer_id();
const auto conv_weights_id = conv_node->input_edge(1)->producer_id();
const auto conv_info = conv_node->convolution_info();
const auto conv_method = conv_node->convolution_method();
const auto num_groups = conv_node->num_groups();
FastMathHint fast_math_hint = conv_node->fast_math_hint();
// Create the fused node
const NodeID fused_id = g.add_node<FusedConvolutionWithPostOpNode>(conv_info, num_groups, conv_method, fast_math_hint);
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing convolution node with ID : " << conv_node->id());
// Add connections from the conv inputs to the fused node
g.add_connection(conv_input_id, 0, fused_id, 0);
g.add_connection(conv_weights_id, 0, fused_id, 1);
if(conv_node->input_edge(2) != nullptr)
{
auto conv_bias_id = conv_node->input_edge(2)->producer_id();
g.add_connection(conv_bias_id, 0, fused_id, 2);
}
// Adding the Element wise operand in case the post op is element wise operation
auto it = std::find_if(post_op_node_list.begin(),
post_op_node_list.end(),
[&](const INode * nd)
{
return (nd->type() == graph::NodeType::EltwiseLayer);
});
if(it != post_op_node_list.end())
{
g.add_connection(eltwise_operand_id, 0, fused_id, 3);
}
g.remove_node(conv_node->id());
// Update fused node outputs
auto fused_node = g.node(fused_id);
fused_node->set_assigned_target(assigned_target);
// Fuse convolution with post op
fuse_convolution_with_post_op(g, fused_node, post_op_node_list, prev_op_dst_pos);
post_op_node_list.clear();
ARM_COMPUTE_LOG_GRAPH_VERBOSE(std::endl);
}
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to the presence of an output accessor\n");
}
}
void fuse_convolution_batch_normalization_with_post_ops(Graph &g, const Edge *output_edge, unsigned int conv_node_id, const std::set<Activation> &supported_fused_activations)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<FusedConvolutionBatchNormalizationNode *>(output_edge->producer());
ARM_COMPUTE_ERROR_ON(conv_node->output(0) == nullptr);
const ConvolutionMethod conv_algorithm = conv_node->convolution_method();
if(conv_algorithm != ConvolutionMethod::GEMM)
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to non GEMM convolution\n");
return;
}
// Prevent fusion if fused node has an output accessor
if(conv_node->output(0)->accessor() == nullptr)
{
// If data type is FP32/FP16, data layout is NHWC, and filter size is 1x1, fuse convolution with post op, as Conv1x1 always leads to GEMM.
const Edge *input_edge = conv_node->input_edge(1);
if(input_edge != nullptr && input_edge->tensor() != nullptr)
{
const DataLayout data_layout = input_edge->tensor()->desc().layout;
const DataType data_type = input_edge->tensor()->desc().data_type;
const TensorShape tensor_shape = input_edge->tensor()->desc().shape;
if((data_layout != DataLayout::NHWC) || (is_data_type_float(data_type) == false) || (tensor_shape.y() != 1) || (tensor_shape.z() != 1))
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to non GEMM convolution\n");
return;
}
}
else
{
return;
}
// Get post op list
int eltwise_operand_id = 0;
int prev_op_dst_pos = 0; // Previous operator dst's postion in current operator
std::list<INode *> post_op_node_list = get_post_op_list(g, eltwise_operand_id, prev_op_dst_pos, conv_node_id, supported_fused_activations);
if(post_op_node_list.size() == 0)
{
return;
}
else // Do convolution fusion with post op if there're one(elementwise), two or more operators
{
const Target assigned_target = conv_node->assigned_target();
// Extract conv inputs
const auto conv_input_id = conv_node->input_edge(0)->producer_id();
const auto conv_weights_id = conv_node->input_edge(1)->producer_id();
const auto bn_mean_id = conv_node->input_edge(3)->producer_id();
const auto bn_var_id = conv_node->input_edge(4)->producer_id();
const auto conv_info = conv_node->convolution_info();
const auto conv_method = conv_node->convolution_method();
const auto num_groups = conv_node->num_groups();
FastMathHint fast_math_hint = conv_node->fast_math_hint();
// Create the fused node
const float epsilon = conv_node->epsilon();
const NodeID fused_id = g.add_node<FusedConvolutionBatchNormalizationWithPostOpsNode>(epsilon, conv_info, num_groups, conv_method, fast_math_hint);
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing FusedConvolutionBatchNormalization node with ID : " << conv_node->id());
// Add connections from the conv inputs to the fused node
g.add_connection(conv_input_id, 0, fused_id, 0);
g.add_connection(conv_weights_id, 0, fused_id, 1);
if(conv_node->input_edge(2) != nullptr)
{
auto conv_bias_id = conv_node->input_edge(2)->producer_id();
g.add_connection(conv_bias_id, 0, fused_id, 2);
}
g.add_connection(bn_mean_id, 0, fused_id, 3);
g.add_connection(bn_var_id, 0, fused_id, 4);
// Move connections of old FusedConvolutionBatchNormalization to the fused node
if(conv_node->input_edge(5) != nullptr)
{
const auto bn_beta_id = conv_node->input_edge(5)->producer_id();
g.add_connection(bn_beta_id, 0, fused_id, 5);
}
if(conv_node->input_edge(6) != nullptr)
{
const auto bn_gamma_id = conv_node->input_edge(6)->producer_id();
g.add_connection(bn_gamma_id, 0, fused_id, 6);
}
// Adding the Element wise operand in case the post op is element wise operation
auto it = std::find_if(post_op_node_list.begin(),
post_op_node_list.end(),
[&](const INode * nd)
{
return (nd->type() == graph::NodeType::EltwiseLayer);
});
if(it != post_op_node_list.end())
{
g.add_connection(eltwise_operand_id, 0, fused_id, 7);
}
// Update fused node outputs
auto fused_node = g.node(fused_id);
fused_node->set_assigned_target(assigned_target);
auto conv_node_name = conv_node->name();
// collect the post ops names
std::string post_ops_name = "";
for(auto &post_op : post_op_node_list)
{
post_ops_name += post_op->name();
}
fused_node->set_common_node_parameters(NodeParams{ conv_node->name() + "+" + post_ops_name, assigned_target });
// Fuse convolution with post op
fuse_convolution_with_post_op(g, fused_node, post_op_node_list, prev_op_dst_pos);
post_op_node_list.clear();
g.remove_node(conv_node->id());
ARM_COMPUTE_LOG_GRAPH_VERBOSE(std::endl);
}
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to the presence of an output accessor\n");
}
}
template <typename N1, typename F, typename... Args>
void fuse_layer(Graph &g, std::function<bool(INode &)> const &prec, const F fuse_fcn, Args &&... optional_arguments)
{
// Note that fused nodes may be added to the end of the node list.
// Instead of only looping over the original list of nodes, we loop over the current node list which could be growing.
// This is intentional as it probes the newly added fused nodes for further fusing opportunities.
for(unsigned int i = 0; i < g.nodes().size(); ++i)
{
auto node = g.node(i);
// Check if the node is of type N1 and not a branching node
if(node && node->type() == N1::node_type && node->output_edges().size() == 1)
{
const auto output_edge_id = *node->output_edges().begin();
const auto output_edge = g.edge(output_edge_id);
// Check if it's the correct target
if((output_edge != nullptr) && (output_edge->consumer() != nullptr) && prec(*output_edge->producer()))
{
fuse_fcn(g, output_edge, i, optional_arguments...);
}
}
}
}
} // namespace detail
const char *NodeFusionMutator::name()
{
return "NodeFusionMutator";
}
IGraphMutator::MutationType NodeFusionMutator::type() const
{
return IGraphMutator::MutationType::Backend;
}
void NodeFusionMutator::mutate(Graph &g)
{
// Supported activations when fusing
const std::set<Activation> supported_fused_activations = { Activation::ABS, Activation::BOUNDED_RELU, Activation::ELU,
Activation::HARD_SWISH, Activation::IDENTITY, Activation::LEAKY_RELU,
Activation::LINEAR, Activation::LOGISTIC, Activation::LU_BOUNDED_RELU,
Activation::RELU, Activation::SOFT_RELU, Activation::SQRT,
Activation::SQUARE, Activation::TANH
};
// Preconditions
auto empty_prec = [](INode &)
{
return true;
};
auto cl_target_prec = [](INode & n)
{
return n.assigned_target() == Target::CL;
};
auto qs8_prec = [&g](INode & n)
{
ARM_COMPUTE_ERROR_ON(n.output(0) == nullptr);
const auto output_edge_id = *n.output_edges().begin();
const auto output_edge = g.edge(output_edge_id);
// To perform fusion the two nodes must have same output quantization information
const bool same_qinfo = n.output(0)->desc().quant_info == output_edge->producer()->output(0)->desc().quant_info;
const bool output_qasymm8 = n.output(0)->desc().data_type == DataType::QASYMM8;
return (output_qasymm8 && same_qinfo) || !output_qasymm8;
};
// Fusion mutations
detail::fuse_layer<PadLayerNode, ConvolutionLayerNode>(g, empty_prec, detail::fuse_pad_with_convolution<ConvolutionLayerNode>);
detail::fuse_layer<PadLayerNode, DepthwiseConvolutionLayerNode>(g, empty_prec, detail::fuse_pad_with_convolution<DepthwiseConvolutionLayerNode>);
// The fusion of PostOps to ConvolutionLayer:
// It must occur after the fusion of PadLayer into ConvolutionLayer
// It must occur before the fusion of normal ActivationLayer into ConvolutionLayer as it takes precedence
detail::fuse_layer<ConvolutionLayerNode>(g, cl_target_prec, detail::fuse_convolution_with_post_ops, supported_fused_activations);
detail::fuse_layer<BatchNormalizationLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<BatchNormalizationLayerNode>, supported_fused_activations);
detail::fuse_layer<ConvolutionLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<ConvolutionLayerNode>, supported_fused_activations);
detail::fuse_layer<DepthwiseConvolutionLayerNode, ActivationLayerNode>(g, qs8_prec, detail::fuse_node_with_activation<DepthwiseConvolutionLayerNode>, supported_fused_activations);
detail::fuse_layer<FullyConnectedLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<FullyConnectedLayerNode>, supported_fused_activations);
detail::fuse_layer<EltwiseLayerNode, ActivationLayerNode>(g, cl_target_prec, detail::fuse_node_with_activation<EltwiseLayerNode>, supported_fused_activations);
// The fusion of BatchNormalizationLayer must occur after the fusion of ActivationLayer. Because FusedConvolutionBatchNormalizationNode assumes the BatchNormalization is already fused with activation, if any
detail::fuse_layer<ConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_convolution_with_batch_normalization);
detail::fuse_layer<DepthwiseConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_depthwise_convolution_with_batch_normalization);
detail::fuse_layer<FusedConvolutionBatchNormalizationNode>(g, cl_target_prec, detail::fuse_convolution_batch_normalization_with_post_ops, supported_fused_activations);
}
} // namespace graph
} // namespace arm_compute