blob: 05988997e7f3cfd096633b0344471e133aaa6071 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CL/CLUtils.h"
#include "src/core/experimental/PostOpUtils.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/utils/helpers/float_ops.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
using ElementsProcessed = Steps;
const auto post_op_utils = experimental::PostOpCLKernelUtils(
{
// PostOp sequence -> {Kernel Postfix, PostOp Slots}
{ {}, { "", {} } },
{ { experimental::PostOpType::Activation }, { "", { 1 } } },
{ { experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 2 } } },
{ { experimental::PostOpType::Eltwise_PRelu }, { "_post_act_eltwise_op_act", { 2 } } },
{ { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 1, 2 } } },
{ { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_PRelu }, { "_post_act_eltwise_op_act", { 1, 2 } } },
{ { experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 2, 3 } } },
{ { experimental::PostOpType::Eltwise_PRelu, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 2, 3 } } },
{ { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 1, 2, 3 } } },
{ { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_PRelu, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 1, 2, 3 } } }
});
Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_UNUSED(alpha);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::F32, DataType::F16);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.k0 & (rhs_info.k0 - 1)) && rhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
ARM_COMPUTE_RETURN_ERROR_ON(rhs_info.k0 > 16);
ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((gemm_info.reinterpret_input_as_3d || gemm_info.depth_output_gemm3d != 0) && (src2 != nullptr)
&& (!gemm_info.broadcast_bias),
"Bias addition only supported with broadcast mode in case the input or dst has to be reinterpreted as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision, "Mixed precision not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for GEMM native");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.is_post_op_sequence_supported(gemm_info.post_ops), "The sequence of Post Ops is not supported");
const unsigned int m = gemm_info.m;
const unsigned int n = gemm_info.n;
const unsigned int k = gemm_info.k;
ARM_COMPUTE_UNUSED(m);
ARM_COMPUTE_UNUSED(n);
ARM_COMPUTE_UNUSED(k);
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != k);
ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(0) != n);
ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(1) != k);
if(gemm_info.reinterpret_input_as_3d)
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != m);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != m);
}
if(src2 != nullptr && !(helpers::float_ops::is_zero(beta)))
{
const unsigned int src2_dim0 = src2->dimension(0);
const unsigned int src2_dim1 = src2->dimension(1);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src2, src1);
if(gemm_info.broadcast_bias)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim1 != 1 || src2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim0 != n || src2_dim1 != m), "Incorrect dimension of bias matrix");
}
}
if(dst->total_size() != 0)
{
const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.are_post_op_shapes_compliant(dst, gemm_info.post_ops), "The Post Op shapes are not compliant");
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info, ElementsProcessed &num_elements_processed)
{
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
Window win{};
Window win_out{};
bool window_changed = false;
// In case both input and dst have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(reinterpret_input_as_3d == reinterpret_output_as_3d)
{
reinterpret_output_as_3d = false;
}
// dst tensor auto initialization if not yet initialized
auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)));
TensorInfo tmp_info(*dst);
if(reinterpret_output_as_3d)
{
// Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(dst->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
// Configure kernel window
num_elems_processed_per_iteration_x = rhs_info.n0;
num_elems_processed_per_iteration_y = lhs_info.m0;
win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
win_out = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic src0_access(src0, 0, 0,
src0->dimension(0),
src0->dimension(1));
AccessWindowStatic src1_access(src1, 0, 0,
ceil_to_multiple(src1->dimension(0), num_elems_processed_per_iteration_x),
src1->dimension(1));
AccessWindowStatic dst_access(dst, 0, 0,
dst->dimension(0),
dst->dimension(1));
if(src2 != nullptr)
{
const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
AccessWindowStatic src2_access(src2, 0, 0,
ceil_to_multiple(src2->dimension(0), bias_processed_per_iteration_x),
src2->dimension(1));
window_changed = update_window_and_padding(win, src0_access, src1_access, src2_access) || // window used by the execute_window_loop
update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor
}
else
{
window_changed = update_window_and_padding(win, src0_access, src1_access) || // window used by the execute_window_loop
update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor
}
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
Window collapsed = win;
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
collapsed = win.collapse(win, dimension_to_collapse);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
ClGemmMatrixMultiplyNativeKernel::ClGemmMatrixMultiplyNativeKernel()
{
_type = CLKernelType::GEMM;
}
void ClGemmMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile_context, ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, float alpha,
float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
// dst tensor auto initialization if not yet initialized
auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)));
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info));
auto padding_info = get_padding_info({ src0, dst });
_reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
_reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
_use_dummy_work_items = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
_add_bias = src2 != nullptr;
_num_post_op_args = gemm_info.post_ops.total_num_arguments();
// In case both input and dst have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
{
_reinterpret_input_as_3d = false;
_reinterpret_output_as_3d = false;
}
// Check if we need to slide the matrix B
const unsigned int num_dimensions_src0 = src0->num_dimensions();
_slide_matrix_b = (src1->num_dimensions() >= num_dimensions_src0);
ElementsProcessed num_elements_processed{};
// Configure kernel window
auto win_config = validate_and_configure_window(src0, src1, src2 != nullptr ? src2 : nullptr, dst, lhs_info, rhs_info, gemm_info, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
IClKernel::configure_internal(win_config.second);
// If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
// we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
// This means that the actual m used by the kernel is given by dst->dimension(1) and not by gemm_info.m
const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m : dst->dimension(1);
const unsigned int h_gemm_3d = _reinterpret_output_as_3d ? dst->dimension(1) : src0->dimension(1);
const unsigned int d_gemm_3d = _reinterpret_output_as_3d ? dst->dimension(2) : src0->dimension(2);
// Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
// Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
// NOTE: This might have implications on heuristics and performance
const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
_m = internal_m;
_n = gemm_info.n;
_k = gemm_info.k;
// Create build options
CLBuildOptions build_opts;
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)), "-DALPHA=" + float_to_string_with_full_precision(alpha));
build_opts.add_option_if(src2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta));
build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA");
build_opts.add_option_if(gemm_info.broadcast_bias, "-DBROADCAST_BIAS");
build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d));
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(src1->dimension(2)));
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
// If post_ops are used, then we disable the use of gemm_info.activation_info
if(gemm_info.post_ops.size() > 0)
{
post_op_utils.set_post_ops_cl_build_options(build_opts, gemm_info.post_ops);
}
else
{
build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
}
std::string kernel_name("gemm_mm_native");
post_op_utils.set_post_ops_cl_kernel_name(kernel_name, gemm_info.post_ops);
// A macro guard to compile ONLY the kernel of interest
build_opts.add_option("-D" + upper_string(kernel_name));
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += (_add_bias ? "add_bias_" : "");
_config_id += (gemm_info.broadcast_bias ? "broadcast_bias_" : "");
_config_id += (_reinterpret_input_as_3d ? "3di_" : "");
_config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : "");
_config_id += lower_string(string_from_data_type(src0->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(gemm_info.k);
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.m0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.n0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.k0);
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}
Status ClGemmMatrixMultiplyNativeKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta,
const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
{
ElementsProcessed num_elements_processed{};
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
src1->clone().get(),
src2 != nullptr ? src2->clone().get() : nullptr,
dst->clone().get(),
lhs_info,
rhs_info,
gemm_info,
num_elements_processed)
.first);
return Status{};
}
void ClGemmMatrixMultiplyNativeKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const auto src0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const auto src1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
const auto src2 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_ERROR_ON(_add_bias && src2 == nullptr);
if(src1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
}
Window slice = window.first_slice_window_3D();
Window slice_matrix_b = slice;
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
if(_reinterpret_input_as_3d)
{
// Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
unsigned int idx0;
if(_add_bias)
{
idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + (7 + _num_post_op_args);
}
else
{
idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + (6 + _num_post_op_args);
}
const unsigned int total_cross_plane_pad = src0->info()->padding().top + src0->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
if(_reinterpret_output_as_3d)
{
// Pass bottom paddings to the kernel if the dst has to be reinterpreted as 3D tensor
unsigned int idx0;
if(_add_bias)
{
idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + 7 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
}
else
{
idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + 6 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
}
const unsigned int total_cross_plane_pad = dst->info()->padding().top + dst->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the matrix multiplication is used to perform a convolution operation
if(!_slide_matrix_b)
{
slice_b = slice_matrix_b;
}
unsigned int idx = 0;
add_2D_tensor_argument(idx, src0, slice);
add_2D_tensor_argument(idx, src1, slice_b);
if(_add_bias)
{
add_2D_tensor_argument(idx, src2, slice);
}
add_2D_tensor_argument(idx, dst, slice);
// post op argument buffers
for(size_t i = 0; i < _num_post_op_args; ++i)
{
const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
add_2D_tensor_argument(idx, post_op_arg, slice);
}
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src0->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src1->info()->strides_in_bytes()[2]));
if(_add_bias)
{
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src2->info()->strides_in_bytes()[2]));
}
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
// post op argument stride_z
for(size_t i = 0; i < _num_post_op_args; ++i)
{
const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(post_op_arg->info()->strides_in_bytes()[2]));
}
// Pass m, n and k at runtime
_kernel.setArg<cl_int>(idx++, _m);
_kernel.setArg<cl_int>(idx++, _n);
_kernel.setArg<cl_int>(idx++, _k);
enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
}
while(window.slide_window_slice_3D(slice));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute