blob: 10cbfc56a13300342d89dad926fcf7afa8a20d65 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/pool2d/neon/list.h"
#include <limits>
#ifdef ENABLE_NCHW_KERNELS
namespace arm_compute
{
namespace cpu
{
#define READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
(x == width + pad_left - 1) ? vset_lane_f32(*(ptr), vdup_n_f32(fval), 0) : vld1_f32(ptr)
#define READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
(x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1) : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) ? vdup_n_f32(fval) : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
#define READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
vcombine_f32(READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval), \
READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 2), y, (ptr + 2), fval))
float32x4x2_t read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
{
float32x4x2_t vec;
vec.val[0] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval);
vec.val[1] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 4), y, (ptr + 4), fval);
return vec;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
float16x4_t read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t, int x, int y, const float16_t *ptr, float16_t fval)
{
float16_t vec[4];
const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
for(int i = 0; i < 4; i++)
{
if(row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
{
vec[i] = *(ptr + i);
}
else
{
vec[i] = fval;
}
}
return wrapper::vload(vec);
}
void pooling3_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr const int pool_size = 3;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float16_t fp16_min = -std::numeric_limits<half_float::half>::infinity();
const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.f;
const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto x_val = id.x() * pool_stride_x;
const auto y_val_0 = id.y() * pool_stride_y;
const auto y_val_1 = (id.y() * pool_stride_y) + 1;
const auto y_val_2 = (id.y() * pool_stride_y) + 2;
float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
x_val, y_val_0, reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value);
float16x4_t middle_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
x_val, y_val_1, reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value);
float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
x_val, y_val_2, reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value);
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
middle_data = vmul_f16(middle_data, middle_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
// Perform pooling
const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
res = vmul_f16(vpadd_f16(res, res), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
res = vpmax_f16(vset_lane_f16(fp16_min, max_data, 3), max_data);
res = vpmax_f16(res, res);
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = vsqrt_f16(res);
}
*(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
},
in, out);
}
template <typename T>
inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
f16_to_f32(float16x4_t in)
{
float32x2_t out = { static_cast<float>(vget_lane_f16(in, 0)), static_cast<float>(vget_lane_f16(in, 1)) };
return out;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <typename T>
inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
f16_to_f32(float32x2_t in)
{
return in;
}
template <typename T>
auto read_2_boundary_aware(int srcw, int srch, int pad_l, int pad_t, int x, int y, const T *ptr, T fval)
{
T vec[2];
const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
for(int i = 0; i < 2; i++)
{
if(row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
{
vec[i] = *(ptr + i);
}
else
{
vec[i] = fval;
}
}
return wrapper::vload(vec);
}
template <typename T>
void pooling2_nchw_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
Iterator in(src, window_src);
Iterator out(dst0, window);
Iterator indices(dst1, window);
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const int pad_left = src->info()->padding().left;
const int pad_right = src->info()->padding().right;
const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
constexpr T float_min = -std::numeric_limits<float>::infinity();
const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f;
execute_window_loop(window, [&](const Coordinates & id)
{
const auto x_val = id.x() * pool_stride_x;
const auto y_val_0 = id.y() * pool_stride_y;
const auto y_val_1 = (id.y() * pool_stride_y) + 1;
auto top_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top,
x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
auto bottom_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top,
x_val, y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
float32x2_t top_data_f32 = f16_to_f32<T>(top_data);
float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
// Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
const float32x2_t max_data_top = vpmax_f32(top_data_f32, top_data_f32);
const float32x2_t max_data_bottom = vpmax_f32(bottom_data_f32, bottom_data_f32);
const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom);
*(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
// Calculate max data indice, which will be used in max unpool.
const uint32_t offset_base = offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T));
const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
const uint32x2_t voffset_top = { offset_top, offset_top + 1u };
const uint32x2_t voffset_bottom = { offset_bottom, offset_bottom + 1u };
const uint32x2_t tmp_indices_top = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
*(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
},
in, out, indices);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
void pooling2_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
if(pool_info.pool_type == PoolingType::MAX && dst1)
{
pooling2_nchw_maxpool_indices<float16_t>(src, dst0, dst1, pool_info, window_src, window);
}
else
{
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr int pool_size = 2;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x, pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float16_t fp16_min = -std::numeric_limits<half_float::half>::infinity();
const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto in_top_ptr = reinterpret_cast<const float16_t *>(src_top_ptr + in.offset());
const auto in_bottom_ptr = reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset());
const auto x_val = id.x() * pool_stride_x;
const auto y_val_0 = id.y() * pool_stride_y;
const auto y_val_1 = (id.y() * pool_stride_y) + 1;
float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
x_val, y_val_0, in_top_ptr, fill_value);
float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
x_val, y_val_1, in_bottom_ptr, fill_value);
float16x4_t res = {};
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmul_f16(top_data, top_data);
bottom_data = vmul_f16(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float16x4_t scale_v = vdup_n_f16(scale);
const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
}
else
{
const float16x4_t max_data = vmax_f16(top_data, bottom_data);
res = vpmax_f16(max_data, max_data);
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = vsqrt_f16(res);
}
// Store result
*(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
},
in, out);
}
}
void poolingMxN_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float16_t fp16_min = -std::numeric_limits<half_float::half>::infinity();
const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
execute_window_loop(window, [&](const Coordinates & id)
{
float16_t res = 0.0f;
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float16_t scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size_y; ++y)
{
for(int x = 0; x < pool_size_x; ++x)
{
const auto ptr = reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
const int idx = x + id.x() * pool_stride_x - pool_pad_left;
const int idy = y + id.y() * pool_stride_y - pool_pad_top;
float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
if(pool_info.pool_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
// Divide by scale
res *= scale;
}
else // if max pooling
{
res = fp16_min;
for(int y = 0; y < pool_size_y; ++y)
{
for(int x = 0; x < pool_size_x; ++x)
{
const auto ptr = reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
const int idx = x + id.x() * pool_stride_x - pool_pad_left;
const int idy = y + id.y() * pool_stride_y - pool_pad_top;
float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
res = std::max(res, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float16_t *>(out.ptr())) = res;
},
in, out);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
void poolingMxN_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? -std::numeric_limits<float>::infinity() : 0.0f;
execute_window_loop(window, [&](const Coordinates & id)
{
float res = 0.0f;
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h,
pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
// Perform pooling
for(int y = 0; y < pool_size_y; ++y)
{
for(int x = 0; x < pool_size_x; ++x)
{
const auto ptr = reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
const int idx = x + id.x() * pool_stride_x - pool_pad_left;
const int idy = y + id.y() * pool_stride_y - pool_pad_top;
float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
if(pool_info.pool_type == PoolingType::L2)
{
data *= data;
}
res += data;
}
}
// Divide by scale
res *= scale;
}
else // if max pooling
{
res = -std::numeric_limits<float>::infinity();
for(int y = 0; y < pool_size_y; ++y)
{
for(int x = 0; x < pool_size_x; ++x)
{
const auto ptr = reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
const int idx = x + id.x() * pool_stride_x - pool_pad_left;
const int idy = y + id.y() * pool_stride_y - pool_pad_top;
float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
res = std::max(res, data);
}
}
}
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = res;
},
in, out);
}
void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
if(pool_info.pool_type == PoolingType::MAX && dst1)
{
pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
}
else
{
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr int pool_size = 2;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? -std::numeric_limits<float>::infinity() : 0.0f;
const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
const auto x_val = id.x() * pool_stride_x;
const auto y_val_0 = id.y() * pool_stride_y;
const auto y_val_1 = (id.y() * pool_stride_y) + 1;
auto top_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr, fill_value);
auto bottom_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1, in_bottom_ptr, fill_value);
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmul_f32(top_data, top_data);
bottom_data = vmul_f32(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
}
else
{
const float32x2_t max_data = vmax_f32(top_data, bottom_data);
res = vpmax_f32(max_data, max_data);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = final_res;
},
in, out);
}
}
void pooling3_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr const int pool_size = 3;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? -std::numeric_limits<float>::infinity() : 0.0f;
const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
const uint8_t *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
execute_window_loop(window, [&](const Coordinates & id)
{
const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
const auto x_val = id.x() * pool_stride_x;
const auto y_val_0 = id.y() * pool_stride_y;
const auto y_val_1 = (id.y() * pool_stride_y) + 1;
const auto y_val_2 = (id.y() * pool_stride_y) + 2;
auto top_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr, fill_value);
auto middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1, in_middle_ptr, fill_value);
auto bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2, in_bottom_ptr, fill_value);
float32x2_t res = {};
float final_res = 0;
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
top_data = vmulq_f32(top_data, top_data);
middle_data = vmulq_f32(middle_data, middle_data);
bottom_data = vmulq_f32(bottom_data, bottom_data);
}
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::infinity(), max_data, 3)), vget_low_f32(max_data));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = final_res;
},
in, out);
}
void pooling7_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
constexpr const int pool_size = 7;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int src_w = src->info()->dimension(0);
const int src_h = src->info()->dimension(1);
const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? -std::numeric_limits<float>::infinity() : 0.0f;
std::array<const uint8_t *, pool_size> src_ptrs{ {} };
for(int i = 0; i < pool_size; ++i)
{
src_ptrs[i] = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
}
execute_window_loop(window, [&](const Coordinates & id)
{
auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());
auto x_val = id.x() * pool_stride_x;
auto y_val = id.y() * pool_stride_y;
float32x4x2_t data = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
float32x2_t res = {};
float final_res = 0.f;
if(pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
for(int i = 1; i < pool_size; ++i)
{
in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
x_val = id.x() * pool_stride_x;
y_val = (id.y() * pool_stride_y) + i;
data = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
// Get power of 2 in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
sum_data = vaddq_f32(sum_data, data.val[0]);
sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
}
res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
for(int i = 1; i < pool_size; ++i)
{
in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
x_val = id.x() * pool_stride_x;
y_val = (id.y() * pool_stride_y) + i;
float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
data = vmax2q_f32(data, temp);
}
res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::infinity(), data.val[1], 3)), vget_low_f32(data.val[1]));
res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
if(pool_info.pool_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr())) = final_res;
},
in, out);
}
} // namespace cpu
} // namespace arm_compute
#endif // ENABLE_NCHW_KERNELS