blob: e35cf9760841439da33ac59c33973b8610d23f1d [file] [log] [blame]
/*
* Copyright (c) 2019-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/instancenorm/generic/neon/impl.h"
#include "src/core/NEON/wrapper/wrapper.h"
namespace arm_compute
{
class ITensor;
class Window;
namespace cpu
{
template <typename InputType, typename AccType>
void vector_float_sum(AccType &result, AccType &result_square, const InputType &inputs)
{
result = wrapper::vadd(result, inputs);
result_square = wrapper::vadd(result_square, wrapper::vmul(inputs, inputs));
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline void vector_float_sum(float32x4_t &result, float32x4_t &result_square, const float16x8_t &inputs)
{
vector_float_sum(result, result_square, wrapper::vcvt<float>(wrapper::vgetlow(inputs)));
vector_float_sum(result, result_square, wrapper::vcvt<float>(wrapper::vgethigh(inputs)));
}
template <>
inline float16x8_t vector_float_norm(const float16x8_t &inputs, const float32x4_t &vec_mean, const float32x4_t &vec_multip, const float32x4_t &vec_beta)
{
const auto input_low = wrapper::vcvt<float>(wrapper::vgetlow(inputs));
const auto input_high = wrapper::vcvt<float>(wrapper::vgethigh(inputs));
const auto result_low = wrapper::vcvt<float16_t>(vector_float_norm(input_low, vec_mean, vec_multip, vec_beta));
const auto result_high = wrapper::vcvt<float16_t>(vector_float_norm(input_high, vec_mean, vec_multip, vec_beta));
float16x8_t result = wrapper::vcombine(result_low, result_high);
return result;
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <typename InputType, typename AccType>
InputType vector_float_norm(const InputType &inputs, const AccType &vec_mean, const AccType &vec_multip, const AccType &vec_beta)
{
return wrapper::vadd(wrapper::vmul(wrapper::vsub(inputs, vec_mean), vec_multip), vec_beta);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <typename T, typename AccType>
void instance_normalization_nchw(ITensor *input, ITensor *output, float gamma, float beta, float epsilon, const Window &window)
{
/** SIMD vector tag type. */
using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
// Clear X/Y dimensions on execution window as we handle the planes manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
win.set(Window::DimY, Window::Dimension(0, 1, 1));
constexpr int window_step_x = 16 / sizeof(T);
const unsigned int elements_plane = input->info()->dimension(0) * output->info()->dimension(1);
Iterator input_it(input, win);
execute_window_loop(win, [&](const Coordinates & id)
{
Window win_plane = window;
win_plane.set(Window::DimX, Window::Dimension(0, 1, 1));
win_plane.set(Window::DimZ, Window::Dimension(id[2], id[2] + 1, 1));
win_plane.set(3, Window::Dimension(id[3], id[3] + 1, 1));
Iterator input_plane_it(input, win_plane);
Iterator output_plane_it(output, win_plane);
auto sum_h_w = static_cast<AccType>(0.f);
auto sum_squares_h_w = static_cast<AccType>(0.f);
execute_window_loop(win_plane, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const T *>(input_plane_it.ptr());
auto vec_sum_h_w = wrapper::vdup_n(static_cast<AccType>(0.f), ExactTagType{});
auto vec_sum_squares_h_w = wrapper::vdup_n(static_cast<AccType>(0.f), ExactTagType{});
// Compute S elements per iteration
int x = window.x().start();
for(; x <= (window.x().end() - window_step_x); x += window_step_x)
{
auto vec_input_val = wrapper::vloadq(input_ptr + x);
vector_float_sum(vec_sum_h_w, vec_sum_squares_h_w, vec_input_val);
}
auto vec2_sum_h_w = wrapper::vpadd(wrapper::vgethigh(vec_sum_h_w), wrapper::vgetlow(vec_sum_h_w));
auto vec2_sum_squares_h_w = wrapper::vpadd(wrapper::vgethigh(vec_sum_squares_h_w), wrapper::vgetlow(vec_sum_squares_h_w));
vec2_sum_h_w = wrapper::vpadd(vec2_sum_h_w, vec2_sum_h_w);
vec2_sum_squares_h_w = wrapper::vpadd(vec2_sum_squares_h_w, vec2_sum_squares_h_w);
sum_h_w += wrapper::vgetlane(vec2_sum_h_w, 0);
sum_squares_h_w += wrapper::vgetlane(vec2_sum_squares_h_w, 0);
// Compute left-over elements
for(; x < window.x().end(); ++x)
{
const auto value = static_cast<AccType>(*(input_ptr + x));
sum_h_w += value;
sum_squares_h_w += value * value;
}
},
input_plane_it, output_plane_it);
const auto mean_h_w = sum_h_w / elements_plane;
const auto var_h_w = sum_squares_h_w / elements_plane - mean_h_w * mean_h_w;
const auto multip_h_w = gamma / std::sqrt(var_h_w + epsilon);
const auto vec_mean_h_w = wrapper::vdup_n(static_cast<AccType>(mean_h_w), ExactTagType{});
const auto vec_multip_h_w = wrapper::vdup_n(static_cast<AccType>(multip_h_w), ExactTagType{});
const auto vec_beta = wrapper::vdup_n(static_cast<AccType>(beta), ExactTagType{});
execute_window_loop(win_plane, [&](const Coordinates &)
{
auto input_ptr = reinterpret_cast<T *>(input_plane_it.ptr());
auto output_ptr = reinterpret_cast<T *>(output_plane_it.ptr());
// Compute S elements per iteration
int x = window.x().start();
//auto vec_val = wrapper::vdup_n(static_cast<T>(0.0f), ExactTagType{});
for(; x <= (window.x().end() - window_step_x); x += window_step_x)
{
const auto vec_val = wrapper::vloadq(input_ptr + x);
const auto normalized_vec = vector_float_norm(vec_val, vec_mean_h_w, vec_multip_h_w, vec_beta);
wrapper::vstore(output_ptr + x, normalized_vec);
}
// Compute left-over elements
for(; x < window.x().end(); ++x)
{
const auto val = static_cast<AccType>(*(input_ptr + x));
*(output_ptr + x) = static_cast<T>((val - mean_h_w) * multip_h_w + beta);
}
},
input_plane_it, output_plane_it);
},
input_it);
}
template void instance_normalization_nchw<float>(ITensor *input, ITensor *output, float gamma, float beta, float epsilon, const Window &window);
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
template void instance_normalization_nchw<float16_t, float>(ITensor *input, ITensor *output, float gamma, float beta, float epsilon, const Window &window);
template void instance_normalization_nchw<float16_t>(ITensor *input, ITensor *output, float gamma, float beta, float epsilon, const Window &window);
#endif //defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
} // namespace cpu
} // namespace arm_compute