blob: ead54ab14eac8ca9c4a4395fad37aadf53265520 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef SRC_CORE_NEON_KERNELS_ELEMENTWISE_IMPL_H
#define SRC_CORE_NEON_KERNELS_ELEMENTWISE_IMPL_H
#include "src/core/NEON/NEAsymm.h"
namespace arm_compute
{
namespace cpu
{
template <ArithmeticOperation op, typename VectorType>
typename VectorType::type elementwise_arithm_op(const typename VectorType::type &a, const typename VectorType::type &b)
{
using vec_type = typename VectorType::type;
using scalar_type = typename VectorType::scalar_type;
using tag_type = typename VectorType::tag_type;
vec_type res = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});
switch(op)
{
case ArithmeticOperation::MAX:
res = wrapper::vmax(a, b);
break;
case ArithmeticOperation::MIN:
res = wrapper::vmin(a, b);
break;
case ArithmeticOperation::SQUARED_DIFF:
{
const vec_type tmp = wrapper::vsub(a, b);
res = wrapper::vmul(tmp, tmp);
break;
}
case ArithmeticOperation::PRELU:
{
const vec_type zero = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});
const vec_type tmp = wrapper::vmul(a, b);
const auto gt = wrapper::vcgt(a, zero);
res = wrapper::vbsl(gt, a, tmp);
break;
}
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
typename VectorType::type elementwise_arithm_op_broadcast(const typename VectorType::type &a, const ScalarType &broadcast_value, const bool reorder)
{
using tag_type = typename VectorType::tag_type;
using vec_type = typename VectorType::type;
vec_type broadcast_vector = wrapper::vdup_n(broadcast_value, tag_type{});
return elementwise_arithm_op<op, VectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}
template <typename InputScalarType, typename OutputScalarType, typename InputVectorType>
void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &),
int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool),
int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *))
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = std::min(16 / static_cast<int>(sizeof(OutputScalarType)), 8);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
const InputScalarType broadcast_value = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2);
for(; x < window_end_x; ++x)
{
const auto a = *(non_broadcast_input_ptr + x);
*(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr);
for(; x < window_end_x; ++x)
{
const auto a = *(input1_ptr + x);
const auto b = *(input2_ptr + x);
*(output_ptr + x) = (*scalar_func)(a, b);
}
},
input1, input2, output);
}
}
template <ArithmeticOperation op, typename ScalarType>
inline ScalarType elementwise_arithm_op_scalar(const ScalarType &a, const ScalarType &b)
{
auto res = ScalarType(0);
switch(op)
{
case ArithmeticOperation::MAX:
res = std::max(a, b);
break;
case ArithmeticOperation::MIN:
res = std::min(a, b);
break;
case ArithmeticOperation::SQUARED_DIFF:
{
res = (a - b) * (a - b);
break;
}
case ArithmeticOperation::PRELU:
{
res = (a > 0 ? a : a * b);
break;
}
case ArithmeticOperation::DIV:
{
res = a / b;
if(std::is_integral<ScalarType>::value)
{
res = (b == 0) ? 0 : res;
if(static_cast<int32_t>(a) % static_cast<int32_t>(b) != 0 && ((a < 0) != (b < 0)))
{
--res;
}
}
break;
}
case ArithmeticOperation::POWER:
{
res = std::pow(a, b);
break;
}
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <>
inline int32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<int32_t, 4>>(const int32x4_t &a, const int32x4_t &b)
{
return vcvtq_s32_f32(vfloorq_f32(wrapper::vdiv(vcvtq_f32_s32(a), vcvtq_f32_s32(b))));
}
template <>
inline float32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
{
return wrapper::vdiv(a, b);
}
template <>
inline float32x4_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
{
return wrapper::vpow(a, b);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline float16x8_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
{
return wrapper::vdiv(a, b);
}
template <>
inline float16x8_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
{
return wrapper::vpow(a, b);
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_loop(int window_start_x, int window_end_x, int window_step_x,
const ScalarType *input1_ptr, const ScalarType *input2_ptr, ScalarType *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
wrapper::vstore(output_ptr + x, elementwise_arithm_op<op, VectorType>(a, b));
}
return x;
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const ScalarType *non_broadcast_input_ptr, const ScalarType &broadcast_value, ScalarType *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq((non_broadcast_input_ptr + x));
wrapper::vstore(output_ptr + x, elementwise_arithm_op_broadcast<op, ScalarType, VectorType>(a, broadcast_value, reorder));
}
return x;
}
template <ArithmeticOperation op, typename VectorType>
void elementwise_arithm_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
using scalar_type = typename VectorType::scalar_type;
elementwise_op<scalar_type, scalar_type, VectorType>(in1, in2, out, window,
&elementwise_arithm_op_scalar<op, scalar_type>,
&elementwise_arithm_op_broadcast_loop<op, scalar_type, VectorType>,
&elementwise_arithm_op_loop<op, scalar_type, VectorType>);
}
template <ComparisonOperation op, typename InputScalarType>
inline uint8_t elementwise_comp_op_scalar(const InputScalarType &a, const InputScalarType &b)
{
bool res = false;
switch(op)
{
case ComparisonOperation::Equal:
res = (a == b);
break;
case ComparisonOperation::NotEqual:
res = (a != b);
break;
case ComparisonOperation::Greater:
res = (a > b);
break;
case ComparisonOperation::GreaterEqual:
res = (a >= b);
break;
case ComparisonOperation::Less:
res = (a < b);
break;
case ComparisonOperation::LessEqual:
res = (a <= b);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res ? ~static_cast<uint8_t>(0) : static_cast<uint8_t>(0);
}
template <ComparisonOperation op, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op(const InputVectorType &a, const InputVectorType &b)
{
OutputVectorType res = { 0, 0, 0, 0 };
switch(op)
{
case ComparisonOperation::Equal:
res = wrapper::vceq(a, b);
break;
case ComparisonOperation::NotEqual:
res = wrapper::vnot(wrapper::vceq(a, b));
break;
case ComparisonOperation::Greater:
res = wrapper::vcgt(a, b);
break;
case ComparisonOperation::GreaterEqual:
res = wrapper::vcge(a, b);
break;
case ComparisonOperation::Less:
res = wrapper::vcgt(b, a);
break;
case ComparisonOperation::LessEqual:
res = wrapper::vcge(b, a);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op_broadcast(const InputVectorType &a, const InputScalarType &broadcast_value, const bool reorder)
{
InputVectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag());
return elementwise_comp_op<op, InputVectorType, OutputVectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_8_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint8x16_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, a);
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_16_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint16x8_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, wrapper::vmovn(a));
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_32_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x), broadcast_value, reorder);
const auto b = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x + 4), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(a), wrapper::vmovn(b))));
}
if(x <= window_end_x - 4)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
for(int i = 0; i < 4; i++)
{
*(output_ptr + x + i) = wrapper::vgetlane(a, i);
}
x = +4;
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_8_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint8x16_t>(a, b);
wrapper::vstore(output_ptr + x, res);
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_16_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint16x8_t>(a, b);
wrapper::vstore(output_ptr + x, wrapper::vmovn(res));
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_32_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
auto a = wrapper::vloadq(input1_ptr + x);
auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
a = wrapper::vloadq(input1_ptr + x + 4);
b = wrapper::vloadq(input2_ptr + x + 4);
const auto res2 = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(res), wrapper::vmovn(res2))));
}
if(x <= window_end_x - 4)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
for(int i = 0; i < 4; i++)
{
*(output_ptr + x + i) = wrapper::vgetlane(res, i);
}
x = +4;
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_8_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_8_loop<op, InputScalarType, InputVectorType>);
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_16_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_16_loop<op, InputScalarType, InputVectorType>);
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_32_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_32_loop<op, InputScalarType, InputVectorType>);
}
inline float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
{
qasymm8x16_t x = vld1q_u8(input1_ptr);
const float32x4x4_t out =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
}
};
return out;
}
inline float32x4x4_t load_quantized_signed(const int8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
{
qasymm8x16_signed_t x = vld1q_s8(input1_ptr);
const float32x4x4_t out =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
}
};
return out;
}
inline void store_quantized(uint8_t *output_ptr, const uint32x4x4_t &out)
{
const uint8x8_t pa = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[0]), vqmovn_u32(out.val[1])));
const uint8x8_t pb = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[2]), vqmovn_u32(out.val[3])));
vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}
inline void store_quantized(uint8_t *output_ptr, const int32x4x4_t &out)
{
const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}
inline void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
{
int32x4x4_t out =
{
{
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
}
};
store_quantized(output_ptr, out);
}
inline void store_quantized_signed(int8_t *output_ptr, const int32x4x4_t &out)
{
const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
vst1q_s8(output_ptr, vcombine_s8(pa, pb));
}
inline void store_quantized_signed(int8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
{
int32x4x4_t out =
{
{
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
}
};
store_quantized_signed(output_ptr, out);
}
template <ArithmeticOperation op>
inline uint8_t elementwise_arithm_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
return quantize_qasymm8(elementwise_arithm_op_scalar<op>(a, b), qinfo);
}
template <ArithmeticOperation op>
inline int8_t elementwise_arithm_op_quantized_signed_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
return quantize_qasymm8_signed(elementwise_arithm_op_scalar<op>(a, b), qinfo);
}
template <ArithmeticOperation op>
float32x4x4_t elementwise_arithm_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
using neon_vector_float = wrapper::traits::neon_vector<float, 4>;
float32x4x4_t out =
{
{
elementwise_arithm_op<op, neon_vector_float>(a.val[0], b.val[0]),
elementwise_arithm_op<op, neon_vector_float>(a.val[1], b.val[1]),
elementwise_arithm_op<op, neon_vector_float>(a.val[2], b.val[2]),
elementwise_arithm_op<op, neon_vector_float>(a.val[3], b.val[3]),
}
};
return out;
}
template <ComparisonOperation op>
inline uint8_t elementwise_comp_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
ARM_COMPUTE_UNUSED(qinfo);
return elementwise_comp_op_scalar<op>(a, b);
}
template <ComparisonOperation op>
inline uint32x4x4_t elementwise_comp_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
uint32x4x4_t out =
{
{
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[0], b.val[0]),
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[1], b.val[1]),
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[2], b.val[2]),
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[3], b.val[3])
}
};
return out;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
float32x4_t voffseto, float32x4_t invvscaleo)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Get inputs and compute output
const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
}
return x;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_singed_loop(int window_start_x, int window_end_x, int window_step_x,
const int8_t *input1_ptr, const int8_t *input2_ptr, int8_t *output_ptr,
int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
float32x4_t voffseto, float32x4_t invvscaleo)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Get inputs and compute output
const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
}
return x;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
}
return x;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, int8_t *output_ptr,
int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
}
return x;
}
template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
float32x4_t voffseto, float32x4_t invvscaleo)
{
ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
const uint32x4x4_t rf = elementwise_comp_op<op>(af, bf);
store_quantized(output_ptr + x, rf);
}
return x;
}
template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_signed_loop(int window_start_x, int window_end_x, int window_step_x,
const int8_t *input1_ptr, const int8_t *input2_ptr, uint8_t *output_ptr,
int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
float32x4_t voffseto, float32x4_t invvscaleo)
{
ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
const uint32x4x4_t rf = elementwise_comp_op<op>(af, bf);
store_quantized(output_ptr + x, rf);
}
return x;
}
template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
const uint32x4x4_t rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
store_quantized(output_ptr + x, rf);
}
return x;
}
template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
const uint32x4x4_t rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
store_quantized(output_ptr + x, rf);
}
return x;
}
inline void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
float32x4_t, float32x4_t, const bool),
int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *,
int32x4_t, int32x4_t, float32x4_t, float32x4_t,
float32x4_t, float32x4_t))
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
// Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero)
const float32x4_t voffseto = vdupq_n_f32(output_qinfo.offset + 0.5f);
const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);
if(is_broadcast_across_x)
{
// Select the broadcast input on the X axis
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale);
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
const uint8_t broadcast_value = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_u8(broadcast_value), broadcast_qinfo);
int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
for(; x < window_end_x; ++x)
{
const float afs = dequantize_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
const float bfs = dequantize_qasymm8(broadcast_value, broadcast_qinfo);
*(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();
// Input1 quantization info
const int32x4_t voffset1 = vdupq_n_s32(input1_qinfo.offset);
const float32x4_t vscale1 = vdupq_n_f32(input1_qinfo.scale);
// Input2 quantization info
const int32x4_t voffset2 = vdupq_n_s32(input2_qinfo.offset);
const float32x4_t vscale2 = vdupq_n_f32(input2_qinfo.scale);
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
vscale1, vscale2, voffseto, invvscaleo);
for(; x < window_end_x; ++x)
{
const float afs = dequantize_qasymm8(*(input1_ptr + x), input1_qinfo);
const float bfs = dequantize_qasymm8(*(input2_ptr + x), input2_qinfo);
*(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
}
},
input1, input2, output);
}
}
inline void elementwise_comp_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
float32x4_t, float32x4_t, const bool),
int (*neon_func)(int, int, int, const int8_t *, const int8_t *, uint8_t *,
int32x4_t, int32x4_t, float32x4_t, float32x4_t,
float32x4_t, float32x4_t))
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
const float32x4_t voffseto = vdupq_n_f32(output_qinfo.offset);
const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);
if(is_broadcast_across_x)
{
// Select the broadcast input on the X axis
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale);
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
const int8_t broadcast_value = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);
int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
for(; x < window_end_x; ++x)
{
const float afs = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
const float bfs = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
*(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();
// Input1 quantization info
const int32x4_t voffset1 = vdupq_n_s32(input1_qinfo.offset);
const float32x4_t vscale1 = vdupq_n_f32(input1_qinfo.scale);
// Input2 quantization info
const int32x4_t voffset2 = vdupq_n_s32(input2_qinfo.offset);
const float32x4_t vscale2 = vdupq_n_f32(input2_qinfo.scale);
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
vscale1, vscale2, voffseto, invvscaleo);
for(; x < window_end_x; ++x)
{
const float afs = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
const float bfs = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
*(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
}
},
input1, input2, output);
}
}
inline void elementwise_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
int8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, int8_t *, int32x4_t, float32x4_t,
float32x4_t, float32x4_t, const bool),
int (*neon_func)(int, int, int, const int8_t *, const int8_t *, int8_t *,
int32x4_t, int32x4_t, float32x4_t, float32x4_t,
float32x4_t, float32x4_t))
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
const float32x4_t voffseto = vdupq_n_f32(output_qinfo.offset);
const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);
if(is_broadcast_across_x)
{
// Select the broadcast input on the X axis
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale);
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
const int8_t broadcast_value = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);
int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
for(; x < window_end_x; ++x)
{
const float afs = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
const float bfs = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
*(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();
// Input1 quantization info
const int32x4_t voffset1 = vdupq_n_s32(input1_qinfo.offset);
const float32x4_t vscale1 = vdupq_n_f32(input1_qinfo.scale);
// Input2 quantization info
const int32x4_t voffset2 = vdupq_n_s32(input2_qinfo.offset);
const float32x4_t vscale2 = vdupq_n_f32(input2_qinfo.scale);
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates &)
{
const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
vscale1, vscale2, voffseto, invvscaleo);
for(; x < window_end_x; ++x)
{
const float afs = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
const float bfs = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
*(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
}
},
input1, input2, output);
}
}
template <ArithmeticOperation op>
void elementwise_arithm_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op_quantized(in1, in2, out, window, &elementwise_arithm_op_quantized_scalar<op>,
&elementwise_arithm_op_quantized_broadcast_loop<op>,
&elementwise_arithm_op_quantized_loop<op>);
}
template <ArithmeticOperation op>
void elementwise_arithm_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op_quantized_signed(in1, in2, out, window, &elementwise_arithm_op_quantized_signed_scalar<op>,
&elementwise_arithm_op_quantized_signed_broadcast_loop<op>,
&elementwise_arithm_op_quantized_singed_loop<op>);
}
template <ComparisonOperation op>
void elementwise_comp_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op_quantized(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
&elementwise_comp_op_quantized_broadcast_loop<op>,
&elementwise_comp_op_quantized_loop<op>);
}
template <ComparisonOperation op>
void elementwise_comp_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_comp_quantized_signed(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
&elementwise_comp_op_quantized_signed_broadcast_loop<op>,
&elementwise_comp_op_quantized_signed_loop<op>);
}
} // namespace cpu
} // namespace arm_compute
#endif /* SRC_CORE_NEON_KERNELS_ELEMENTWISE_IMPL_H */