blob: bfb693e3765af18e78f1ece2cc072c6c349636da [file] [log] [blame]
/*
* Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPER_H
#define ARM_COMPUTE_HELPER_H
#include "load_store_utility.h"
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_accumulate_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#if defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#pragma OPENCL EXTENSION cl_arm_printf : enable
#endif // defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#define GPU_ARCH_MIDGARD 0x100
#define GPU_ARCH_BIFROST 0x200
/** Concatenate two inputs.
*
* @param[in] a The first input to be concatenated
* @param[in] b The second input to be concatenated
*
* @return The concatenated output
*/
#define CONCAT(a, b) a##b
/** Expand the given vector
*
* @param[in] x The vector to be expanded
*
* @return The expanded output
*/
#define EXPAND(x) x
/** Clamp the given value between an upper and lower bound.
*
* @param[in] x The value to be clamped
* @param[in] min_val The lower bound
* @param[in] max_val The upper bound
*
* @return The clamped value.
*/
#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
/** REVn reverses the given vector whose size is n.
* @name REVn
*
* @param[in] x The vector to be reversed
*
* @return The reversed vector
* @{
*/
#define REV1(x) ((x))
#define REV2(x) ((x).s10)
#define REV3(x) ((x).s210)
#define REV4(x) ((x).s3210)
#define REV8(x) ((x).s76543210)
#define REV16(x) ((x).sFEDCBA9876543210)
/** @} */ // end of group REVn
/** Reverse the given vector.
* @name REVERSE
*
* @param[in] x The vector to be reversed
* @param[in] s The size of the vector
*
* @return The reversed vector
* @{
*/
#define REVERSE_STR(x, s) REV##s((x))
#define REVERSE(x, s) REVERSE_STR(x, s)
/** @} */ // end of group REVERSE
/** Circular-right-shift (rotate-right) the vector of size s by the amount of n.
* @name ROTs_n
*
* @param[in] x The vector to be shifted
*
* @return The shifted vector
* @{
*/
#define ROT1_0(x) ((x))
#define ROT1_1(x) ((x))
#define ROT2_0(x) ((x))
#define ROT2_1(x) ((x).s10)
#define ROT2_2(x) ((x))
#define ROT3_0(x) ((x))
#define ROT3_1(x) ((x).s201)
#define ROT3_2(x) ((x).s120)
#define ROT3_3(x) ((x))
#define ROT4_0(x) ((x))
#define ROT4_1(x) ((x).s3012)
#define ROT4_2(x) ((x).s2301)
#define ROT4_3(x) ((x).s1230)
#define ROT4_4(x) ((x))
#define ROT8_0(x) ((x))
#define ROT8_1(x) ((x).s70123456)
#define ROT8_2(x) ((x).s67012345)
#define ROT8_3(x) ((x).s56701234)
#define ROT8_4(x) ((x).s45670123)
#define ROT8_5(x) ((x).s34567012)
#define ROT8_6(x) ((x).s23456701)
#define ROT8_7(x) ((x).s12345670)
#define ROT8_8(x) ((x))
#define ROT16_0(x) ((x))
#define ROT16_1(x) ((x).sF0123456789ABCDE)
#define ROT16_2(x) ((x).sEF0123456789ABCD)
#define ROT16_3(x) ((x).sDEF0123456789ABC)
#define ROT16_4(x) ((x).sCDEF0123456789AB)
#define ROT16_5(x) ((x).sBCDEF0123456789A)
#define ROT16_6(x) ((x).sABCDEF0123456789)
#define ROT16_7(x) ((x).s9ABCDEF012345678)
#define ROT16_8(x) ((x).s89ABCDEF01234567)
#define ROT16_9(x) ((x).s789ABCDEF0123456)
#define ROT16_10(x) ((x).s6789ABCDEF012345)
#define ROT16_11(x) ((x).s56789ABCDEF01234)
#define ROT16_12(x) ((x).s456789ABCDEF0123)
#define ROT16_13(x) ((x).s3456789ABCDEF012)
#define ROT16_14(x) ((x).s23456789ABCDEF01)
#define ROT16_15(x) ((x).s123456789ABCDEF0)
#define ROT16_16(x) ((x))
/** @} */ // end of group ROTs_n
/** Circular-right-shift (rotate-right) the given vector by the given amount.
* @name ROTATE
*
* @param[in] x The vector to be shifted
* @param[in] s The size of the vector
* @param[in] n The amount to be shifted
*
* @return The shifted vector
* @{
*/
#define ROTATE_STR(x, s, n) ROT##s##_##n(x)
#define ROTATE(x, s, n) ROTATE_STR(x, s, n)
/** @} */ // end of group ROTATE
/** Creates a vector of size n filled with offset values corresponding to the location of each element.
* @name V_OFFSn
*
* @param[in] dt The data type of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define V_OFFS1(dt) (dt##1)(0)
#define V_OFFS2(dt) (dt##2)(0, 1)
#define V_OFFS3(dt) (dt##3)(0, 1, 2)
#define V_OFFS4(dt) (dt##4)(0, 1, 2, 3)
#define V_OFFS8(dt) (dt##8)(0, 1, 2, 3, 4, 5, 6, 7)
#define V_OFFS16(dt) (dt##16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
/** @} */ // end of group V_OFFSn
/** Create a vector filled with offset values corresponding to the location of each element.
* @name VEC_OFFS
*
* @param[in] dt The data type of the output vector
* @param[in] s The size of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define VEC_OFFS_STR(dt, s) V_OFFS##s(dt)
#define VEC_OFFS(dt, s) VEC_OFFS_STR(dt, s)
/** @} */ // end of group VEC_OFFS
#define VLOAD_STR(size) vload##size
#define VLOAD(size) VLOAD_STR(size)
/** Extended partial vload that correctly handles scalar values as well.
* Load the **lower** 0 to (n-1)th elements of the given vector while minimising the amount of load ops
* @name VLOAD_PARTIAL
*
* @note With this macro, the passed data can be both a vector and a scalar
* @note @p load_size needs to be <= @p size
* eg 1: Valid
* VLOAD_PARTIAL(16, 15) ...;
* eg 2: Invalid
* VLOAD_PARTIAL(4, 7) ...;
*
* @param[in] size The width of @p DATA. Supported values: 1(scalar), 2, 3, 4, 8, 16
* @param[in] load_size The number of lower elements to load. Supported values: 1-16, but has to be <= @p size
* @{
*/
#define VLOAD_PARTIAL_STR(size, load_size) vload_partial_##size##_##load_size
#define VLOAD_PARTIAL(size, load_size) VLOAD_PARTIAL_STR(size, load_size)
#define NO_LOAD(data, offs, ptr) \
{ \
}
// Size == 1 (scalar)
#define vload_partial_1_0 NO_LOAD
#define vload_partial_1_1 vload1
#define vload_partial_1_2 NO_LOAD
#define vload_partial_1_3 NO_LOAD
#define vload_partial_1_4 NO_LOAD
#define vload_partial_1_5 NO_LOAD
#define vload_partial_1_6 NO_LOAD
#define vload_partial_1_7 NO_LOAD
#define vload_partial_1_8 NO_LOAD
#define vload_partial_1_9 NO_LOAD
#define vload_partial_1_10 NO_LOAD
#define vload_partial_1_11 NO_LOAD
#define vload_partial_1_12 NO_LOAD
#define vload_partial_1_13 NO_LOAD
#define vload_partial_1_14 NO_LOAD
#define vload_partial_1_15 NO_LOAD
#define vload_partial_1_16 NO_LOAD
// Size == 2
#define vload_partial_2_0 NO_LOAD
#define vload_partial_2_1 vload_partial_1
#define vload_partial_2_2 vload_partial_2
#define vload_partial_2_3 NO_LOAD
#define vload_partial_2_4 NO_LOAD
#define vload_partial_2_5 NO_LOAD
#define vload_partial_2_6 NO_LOAD
#define vload_partial_2_7 NO_LOAD
#define vload_partial_2_8 NO_LOAD
#define vload_partial_2_9 NO_LOAD
#define vload_partial_2_10 NO_LOAD
#define vload_partial_2_11 NO_LOAD
#define vload_partial_2_12 NO_LOAD
#define vload_partial_2_13 NO_LOAD
#define vload_partial_2_14 NO_LOAD
#define vload_partial_2_15 NO_LOAD
#define vload_partial_2_16 NO_LOAD
// Size == 3
#define vload_partial_3_0 NO_LOAD
#define vload_partial_3_1 vload_partial_1
#define vload_partial_3_2 vload_partial_2
#define vload_partial_3_3 vload_partial_3
#define vload_partial_3_4 NO_LOAD
#define vload_partial_3_5 NO_LOAD
#define vload_partial_3_6 NO_LOAD
#define vload_partial_3_7 NO_LOAD
#define vload_partial_3_8 NO_LOAD
#define vload_partial_3_9 NO_LOAD
#define vload_partial_3_10 NO_LOAD
#define vload_partial_3_11 NO_LOAD
#define vload_partial_3_12 NO_LOAD
#define vload_partial_3_13 NO_LOAD
#define vload_partial_3_14 NO_LOAD
#define vload_partial_3_15 NO_LOAD
#define vload_partial_3_16 NO_LOAD
// Size == 4
#define vload_partial_4_0 NO_LOAD
#define vload_partial_4_1 vload_partial_1
#define vload_partial_4_2 vload_partial_2
#define vload_partial_4_3 vload_partial_3
#define vload_partial_4_4 vload_partial_4
#define vload_partial_4_5 NO_LOAD
#define vload_partial_4_6 NO_LOAD
#define vload_partial_4_7 NO_LOAD
#define vload_partial_4_8 NO_LOAD
#define vload_partial_4_9 NO_LOAD
#define vload_partial_4_10 NO_LOAD
#define vload_partial_4_11 NO_LOAD
#define vload_partial_4_12 NO_LOAD
#define vload_partial_4_13 NO_LOAD
#define vload_partial_4_14 NO_LOAD
#define vload_partial_4_15 NO_LOAD
#define vload_partial_4_16 NO_LOAD
// Size == 8
#define vload_partial_8_0 NO_LOAD
#define vload_partial_8_1 vload_partial_1
#define vload_partial_8_2 vload_partial_2
#define vload_partial_8_3 vload_partial_3
#define vload_partial_8_4 vload_partial_4
#define vload_partial_8_5 vload_partial_5
#define vload_partial_8_6 vload_partial_6
#define vload_partial_8_7 vload_partial_7
#define vload_partial_8_8 vload_partial_8
#define vload_partial_8_9 NO_LOAD
#define vload_partial_8_10 NO_LOAD
#define vload_partial_8_11 NO_LOAD
#define vload_partial_8_12 NO_LOAD
#define vload_partial_8_13 NO_LOAD
#define vload_partial_8_14 NO_LOAD
#define vload_partial_8_15 NO_LOAD
#define vload_partial_8_16 NO_LOAD
// Size == 16
#define vload_partial_16_0 NO_LOAD
#define vload_partial_16_1 vload_partial_1
#define vload_partial_16_2 vload_partial_2
#define vload_partial_16_3 vload_partial_3
#define vload_partial_16_4 vload_partial_4
#define vload_partial_16_5 vload_partial_5
#define vload_partial_16_6 vload_partial_6
#define vload_partial_16_7 vload_partial_7
#define vload_partial_16_8 vload_partial_8
#define vload_partial_16_9 vload_partial_9
#define vload_partial_16_10 vload_partial_10
#define vload_partial_16_11 vload_partial_11
#define vload_partial_16_12 vload_partial_12
#define vload_partial_16_13 vload_partial_13
#define vload_partial_16_14 vload_partial_14
#define vload_partial_16_15 vload_partial_15
#define vload_partial_16_16 vload_partial_16
/** Partial vload. Load the **lower** 0 to (n-1)th elements of the given vector while minimising the amount of vload ops
* @name vload_partial_n
*
* @note @p DATA needs to be a vector not a scalar
* @note n needs to be <= the vector width of the input variable @p DATA
* eg 1: Valid
* vload_partial_15(var:float16, 0, 0xabcd);
* eg 2: Invalid
* vload_partial_7(var:float4, 0, 0xabcd);
*
* @note in cases n == 1, 2, 3, 4, 8, 16, no extra vload is invoked, thus there's no performance penalty.
*
* @param[in] DATA The name of the variable where to load the values
* @param[in] OFFSET Offset in n
* @param[in] PTR The base pointer
* @{
*/
#define vload_partial_1(DATA, OFFSET, PTR) \
DATA.s0 = vload1(OFFSET, PTR);
#define vload_partial_2(DATA, OFFSET, PTR) \
DATA.s01 = vload2(OFFSET, PTR);
#define vload_partial_3(DATA, OFFSET, PTR) \
DATA.s012 = vload3(OFFSET, PTR);
#define vload_partial_4(DATA, OFFSET, PTR) \
DATA.s0123 = vload4(OFFSET, PTR);
#define vload_partial_5(DATA, OFFSET, PTR) \
vload_partial_4(DATA.s0123, OFFSET, PTR); \
DATA.s4 = vload1(OFFSET, PTR + 4);
#define vload_partial_6(DATA, OFFSET, PTR) \
vload_partial_4(DATA.s0123, OFFSET, PTR); \
vload_partial_2(DATA.s45, OFFSET, PTR + 4);
#define vload_partial_7(DATA, OFFSET, PTR) \
vload_partial_4(DATA.s0123, OFFSET, PTR); \
vload_partial_3(DATA.s456, OFFSET, PTR + 4);
#define vload_partial_8(DATA, OFFSET, PTR) \
DATA.s01234567 = vload8(OFFSET, PTR);
#define vload_partial_9(DATA, OFFSET, PTR) \
vload_partial_8(DATA.s01234567, OFFSET, PTR); \
DATA.s8 = vload1(OFFSET, PTR + 8);
#define vload_partial_10(DATA, OFFSET, PTR) \
vload_partial_8(DATA.s01234567, OFFSET, PTR); \
vload_partial_2(DATA.s89, OFFSET, PTR + 8);
#define vload_partial_11(DATA, OFFSET, PTR) \
vload_partial_8(DATA.s01234567, OFFSET, PTR); \
vload_partial_3(DATA.s89A, OFFSET, PTR + 8);
#define vload_partial_12(DATA, OFFSET, PTR) \
vload_partial_8(DATA.s01234567, OFFSET, PTR); \
vload_partial_4(DATA.s89AB, OFFSET, PTR + 8);
// For vload_partial_{13,14,15}, an 8-vector size has been passed, because vectors size of size 5,6,7 are not supported
#define vload_partial_13(DATA, OFFSET, PTR) \
vload_partial_8(DATA.s01234567, OFFSET, PTR); \
vload_partial_5(DATA.s89ABCDEF, OFFSET, PTR + 8);
#define vload_partial_14(DATA, OFFSET, PTR) \
vload_partial_8(DATA.s01234567, OFFSET, PTR); \
vload_partial_6(DATA.s89ABCDEF, OFFSET, PTR + 8);
#define vload_partial_15(DATA, OFFSET, PTR) \
vload_partial_8(DATA.s01234567, OFFSET, PTR); \
vload_partial_7(DATA.s89ABCDEF, OFFSET, PTR + 8);
#define vload_partial_16(DATA, OFFSET, PTR) \
DATA = vload16(OFFSET, PTR);
/** @} */ // end of groupd vload_partial_n
/** @} */ // end of groupd VLOAD_PARTIAL
#define PIXEL_UNIT4 1
#define PIXEL_UNIT8 2
#define PIXEL_UNIT16 4
/** Utility macro to convert a vector size in pixel unit.
*
* @name CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT
*
* @param[in] vec_size Vector size. Only 4,8 and 16 is supported
*
* @return The pixel unit (number of pixels)
* @{
*/
#define CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT_STR(vec_size) PIXEL_UNIT##vec_size
#define CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(vec_size) CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT_STR(vec_size)
/** @} */ // end of group CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT
#define read_image2d_floatx1(img, x_coord, y_coord) (float4)(read_imagef(img, (int2)(x_coord, y_coord)));
#define read_image2d_floatx2(img, x_coord, y_coord) (float8)(read_imagef(img, (int2)(x_coord, y_coord)), read_imagef(img, (int2)(x_coord + 1, y_coord)));
#define read_image2d_floatx4(img, x_coord, y_coord) (float16)(read_imagef(img, (int2)(x_coord, y_coord)), read_imagef(img, (int2)(x_coord + 1, y_coord)), read_imagef(img, (int2)(x_coord + 2, y_coord)), read_imagef(img, (int2)(x_coord + 3, y_coord)));
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#define read_image2d_halfx1(img, x_coord, y_coord) (half4)(read_imageh(img, (int2)(x_coord, y_coord)));
#define read_image2d_halfx2(img, x_coord, y_coord) (half8)(read_imageh(img, (int2)(x_coord, y_coord)), read_imageh(img, (int2)(x_coord + 1, y_coord)));
#define read_image2d_halfx4(img, x_coord, y_coord) (half16)(read_imageh(img, (int2)(x_coord, y_coord)), read_imageh(img, (int2)(x_coord + 1, y_coord)), read_imageh(img, (int2)(x_coord + 2, y_coord)), read_imageh(img, (int2)(x_coord + 3, y_coord)));
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
/** Utility macro to read a 2D OpenCL image object.
*
* @note Coordinates are not normalized
*
* @param[in] data_type Data type
* @param[in] n0 Number of pixel to read. Only 1,2 and 4 is supported
* @param[in] img OpenCL image object
* @param[in] x_coord The x coordinate for the top-left pixel
* @param[in] y_coord The y coordinate for the top-left pixel
*
* @return Pixels from the 2D OpenCL image object
* @{
*/
#define READ_IMAGE2D_STR(data_type, n0, img, x_coord, y_coord) read_image2d_##data_type##x##n0(img, x_coord, y_coord)
#define READ_IMAGE2D(data_type, n0, img, x_coord, y_coord) READ_IMAGE2D_STR(data_type, n0, img, x_coord, y_coord)
#define VSTORE_STR(size) vstore##size
#define VSTORE(size) VSTORE_STR(size)
#define float1 float
#define half1 half
#define char1 char
#define uchar1 uchar
#define short1 short
#define ushort1 ushort
#define int1 int
#define uint1 uint
#define long1 long
#define ulong1 ulong
#define double1 double
#define vload1(OFFSET, PTR) *(OFFSET + PTR)
#define vstore1(DATA, OFFSET, PTR) *(OFFSET + PTR) = DATA
/** Extended partial vstore that correctly handles scalar values as well.
* Store the **lower** 0 to (n-1)th elements of the given vector while minimising the amount of vstore ops
* @name VSTORE_PARTIAL
*
* @note With this macro, the passed data can be both a vector and a scalar
* @note @p store_size needs to be <= @p size
* eg 1: Valid
* VSTORE_PARTIAL(16, 15) ...;
* eg 2: Invalid
* VSTORE_PARTIAL(4, 7) ...;
*
* @param[in] size The width of @p DATA. Supported values: 1(scalar), 2, 3, 4, 8, 16
* @param[in] store_size The number of lower elements to store. Supported values: 1-16, but has to be <= @p size
* @{
*/
#define VSTORE_PARTIAL_STR(size, store_size) vstore_partial_##size##_##store_size
#define VSTORE_PARTIAL(size, store_size) VSTORE_PARTIAL_STR(size, store_size)
#define NO_STORE(data, offs, ptr) \
{ \
}
// Size == 1 (scalar)
#define vstore_partial_1_0 NO_STORE
#define vstore_partial_1_1 vstore1
#define vstore_partial_1_2 NO_STORE
#define vstore_partial_1_3 NO_STORE
#define vstore_partial_1_4 NO_STORE
#define vstore_partial_1_5 NO_STORE
#define vstore_partial_1_6 NO_STORE
#define vstore_partial_1_7 NO_STORE
#define vstore_partial_1_8 NO_STORE
#define vstore_partial_1_9 NO_STORE
#define vstore_partial_1_10 NO_STORE
#define vstore_partial_1_11 NO_STORE
#define vstore_partial_1_12 NO_STORE
#define vstore_partial_1_13 NO_STORE
#define vstore_partial_1_14 NO_STORE
#define vstore_partial_1_15 NO_STORE
#define vstore_partial_1_16 NO_STORE
// Size == 2
#define vstore_partial_2_0 NO_STORE
#define vstore_partial_2_1 vstore_partial_1
#define vstore_partial_2_2 vstore_partial_2
#define vstore_partial_2_3 NO_STORE
#define vstore_partial_2_4 NO_STORE
#define vstore_partial_2_5 NO_STORE
#define vstore_partial_2_6 NO_STORE
#define vstore_partial_2_7 NO_STORE
#define vstore_partial_2_8 NO_STORE
#define vstore_partial_2_9 NO_STORE
#define vstore_partial_2_10 NO_STORE
#define vstore_partial_2_11 NO_STORE
#define vstore_partial_2_12 NO_STORE
#define vstore_partial_2_13 NO_STORE
#define vstore_partial_2_14 NO_STORE
#define vstore_partial_2_15 NO_STORE
#define vstore_partial_2_16 NO_STORE
// Size == 3
#define vstore_partial_3_0 NO_STORE
#define vstore_partial_3_1 vstore_partial_1
#define vstore_partial_3_2 vstore_partial_2
#define vstore_partial_3_3 vstore_partial_3
#define vstore_partial_3_4 NO_STORE
#define vstore_partial_3_5 NO_STORE
#define vstore_partial_3_6 NO_STORE
#define vstore_partial_3_7 NO_STORE
#define vstore_partial_3_8 NO_STORE
#define vstore_partial_3_9 NO_STORE
#define vstore_partial_3_10 NO_STORE
#define vstore_partial_3_11 NO_STORE
#define vstore_partial_3_12 NO_STORE
#define vstore_partial_3_13 NO_STORE
#define vstore_partial_3_14 NO_STORE
#define vstore_partial_3_15 NO_STORE
#define vstore_partial_3_16 NO_STORE
// Size == 4
#define vstore_partial_4_0 NO_STORE
#define vstore_partial_4_1 vstore_partial_1
#define vstore_partial_4_2 vstore_partial_2
#define vstore_partial_4_3 vstore_partial_3
#define vstore_partial_4_4 vstore_partial_4
#define vstore_partial_4_5 NO_STORE
#define vstore_partial_4_6 NO_STORE
#define vstore_partial_4_7 NO_STORE
#define vstore_partial_4_8 NO_STORE
#define vstore_partial_4_9 NO_STORE
#define vstore_partial_4_10 NO_STORE
#define vstore_partial_4_11 NO_STORE
#define vstore_partial_4_12 NO_STORE
#define vstore_partial_4_13 NO_STORE
#define vstore_partial_4_14 NO_STORE
#define vstore_partial_4_15 NO_STORE
#define vstore_partial_4_16 NO_STORE
// Size == 8
#define vstore_partial_8_0 NO_STORE
#define vstore_partial_8_1 vstore_partial_1
#define vstore_partial_8_2 vstore_partial_2
#define vstore_partial_8_3 vstore_partial_3
#define vstore_partial_8_4 vstore_partial_4
#define vstore_partial_8_5 vstore_partial_5
#define vstore_partial_8_6 vstore_partial_6
#define vstore_partial_8_7 vstore_partial_7
#define vstore_partial_8_8 vstore_partial_8
#define vstore_partial_8_9 NO_STORE
#define vstore_partial_8_10 NO_STORE
#define vstore_partial_8_11 NO_STORE
#define vstore_partial_8_12 NO_STORE
#define vstore_partial_8_13 NO_STORE
#define vstore_partial_8_14 NO_STORE
#define vstore_partial_8_15 NO_STORE
#define vstore_partial_8_16 NO_STORE
// Size == 16
#define vstore_partial_16_0 NO_STORE
#define vstore_partial_16_1 vstore_partial_1
#define vstore_partial_16_2 vstore_partial_2
#define vstore_partial_16_3 vstore_partial_3
#define vstore_partial_16_4 vstore_partial_4
#define vstore_partial_16_5 vstore_partial_5
#define vstore_partial_16_6 vstore_partial_6
#define vstore_partial_16_7 vstore_partial_7
#define vstore_partial_16_8 vstore_partial_8
#define vstore_partial_16_9 vstore_partial_9
#define vstore_partial_16_10 vstore_partial_10
#define vstore_partial_16_11 vstore_partial_11
#define vstore_partial_16_12 vstore_partial_12
#define vstore_partial_16_13 vstore_partial_13
#define vstore_partial_16_14 vstore_partial_14
#define vstore_partial_16_15 vstore_partial_15
#define vstore_partial_16_16 vstore_partial_16
/** Partial vstore. Store the **lower** 0 to (n-1)th elements of the given vector while minimising the amount of vstore ops
* @name vstore_partial_n
*
* @note @p DATA needs to be a vector not a scalar
* @note n needs to be <= the vector width of the input variable @p DATA
* eg 1: Valid
* vstore_partial_15(var:float16, 0, 0xabcd);
* eg 2: Invalid
* vstore_partial_7(var:float4, 0, 0xabcd);
*
* @note in cases n == 1, 2, 3, 4, 8, 16, no extra vstore is invoked, thus there's no performance penalty.
*
* @param[in] DATA The name of the variable
* @param[in] OFFSET Offset in n
* @param[in] PTR The base pointer
* @{
*/
#define vstore_partial_1(DATA, OFFSET, PTR) \
vstore1(DATA.s0, OFFSET, PTR);
#define vstore_partial_2(DATA, OFFSET, PTR) \
vstore2(DATA.s01, OFFSET, PTR);
#define vstore_partial_3(DATA, OFFSET, PTR) \
vstore3(DATA.s012, OFFSET, PTR);
#define vstore_partial_4(DATA, OFFSET, PTR) \
vstore4(DATA.s0123, OFFSET, PTR);
#define vstore_partial_5(DATA, OFFSET, PTR) \
vstore_partial_4(DATA.s0123, OFFSET, PTR); \
vstore1(DATA.s4, OFFSET, PTR + 4);
#define vstore_partial_6(DATA, OFFSET, PTR) \
vstore_partial_4(DATA.s0123, OFFSET, PTR); \
vstore_partial_2(DATA.s45, OFFSET, PTR + 4);
#define vstore_partial_7(DATA, OFFSET, PTR) \
vstore_partial_4(DATA.s0123, OFFSET, PTR); \
vstore_partial_3(DATA.s456, OFFSET, PTR + 4);
#define vstore_partial_8(DATA, OFFSET, PTR) \
vstore8(DATA.s01234567, OFFSET, PTR);
#define vstore_partial_9(DATA, OFFSET, PTR) \
vstore_partial_8(DATA.s01234567, OFFSET, PTR); \
vstore1(DATA.s8, OFFSET, PTR + 8);
#define vstore_partial_10(DATA, OFFSET, PTR) \
vstore_partial_8(DATA.s01234567, OFFSET, PTR); \
vstore_partial_2(DATA.s89, OFFSET, PTR + 8);
#define vstore_partial_11(DATA, OFFSET, PTR) \
vstore_partial_8(DATA.s01234567, OFFSET, PTR); \
vstore_partial_3(DATA.s89a, OFFSET, PTR + 8);
#define vstore_partial_12(DATA, OFFSET, PTR) \
vstore_partial_8(DATA.s01234567, OFFSET, PTR); \
vstore_partial_4(DATA.s89ab, OFFSET, PTR + 8);
#define vstore_partial_13(DATA, OFFSET, PTR) \
vstore_partial_8(DATA.s01234567, OFFSET, PTR); \
vstore_partial_5(DATA.s89abcdef, OFFSET, PTR + 8);
#define vstore_partial_14(DATA, OFFSET, PTR) \
vstore_partial_8(DATA.s01234567, OFFSET, PTR); \
vstore_partial_6(DATA.s89abcdef, OFFSET, PTR + 8);
#define vstore_partial_15(DATA, OFFSET, PTR) \
vstore_partial_8(DATA.s01234567, OFFSET, PTR); \
vstore_partial_7(DATA.s89abcdef, OFFSET, PTR + 8);
#define vstore_partial_16(DATA, OFFSET, PTR) \
vstore16(DATA, OFFSET, PTR);
/** @} */ // end of groupd vstore_partial_n
/** @} */ // end of groupd VSTORE_PARTIAL
// Convert built-in functions with _sat modifier are not supported in floating point so we create defines
// without _sat to overcome this issue
#define convert_float_sat convert_float
#define convert_float1_sat convert_float
#define convert_float2_sat convert_float2
#define convert_float3_sat convert_float3
#define convert_float4_sat convert_float4
#define convert_float8_sat convert_float8
#define convert_float16_sat convert_float16
#define convert_half_sat convert_float
#define convert_half1_sat convert_half
#define convert_half2_sat convert_half2
#define convert_half3_sat convert_half3
#define convert_half4_sat convert_half4
#define convert_half8_sat convert_half8
#define convert_half16_sat convert_half16
#define convert_float1 convert_float
#define convert_half1 convert_half
#define convert_char1 convert_char
#define convert_uchar1 convert_uchar
#define convert_short1 convert_short
#define convert_ushort1 convert_ushort
#define convert_int1 convert_int
#define convert_uint1 convert_uint
#define convert_long1 convert_long
#define convert_ulong1 convert_ulong
#define convert_double1 convert_double
#define convert_char1_sat convert_char_sat
#define convert_uchar1_sat convert_uchar_sat
#define convert_uchar2_sat convert_uchar2_sat
#define convert_uchar3_sat convert_uchar3_sat
#define convert_uchar4_sat convert_uchar4_sat
#define convert_uchar8_sat convert_uchar8_sat
#define convert_uchar16_sat convert_uchar16_sat
#define convert_short1_sat convert_short_sat
#define convert_ushort1_sat convert_ushort_sat
#define convert_int1_sat convert_int_sat
#define convert_uint1_sat convert_uint_sat
#define convert_long1_sat convert_long_sat
#define convert_ulong1_sat convert_ulong_sat
#define convert_double1_sat convert_double_sat
#define VEC_DATA_TYPE_STR(type, size) type##size
#define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size)
#define CONVERT_STR(x, type) (convert_##type((x)))
#define CONVERT(x, type) CONVERT_STR(x, type)
#define CONVERT_SAT_STR(x, type) (convert_##type##_sat((x)))
#define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)
#define CONVERT_SAT_ROUND_STR(x, type, round) (convert_##type##_sat_##round((x)))
#define CONVERT_SAT_ROUND(x, type, round) CONVERT_SAT_ROUND_STR(x, type, round)
#define select_vec_dt_uchar(size) uchar##size
#define select_vec_dt_char(size) char##size
#define select_vec_dt_ushort(size) ushort##size
#define select_vec_dt_short(size) short##size
#define select_vec_dt_half(size) short##size
#define select_vec_dt_uint(size) uint##size
#define select_vec_dt_int(size) int##size
#define select_vec_dt_float(size) int##size
#define select_vec_dt_ulong(size) ulong##size
#define select_vec_dt_long(size) long##size
#define SELECT_VEC_DATA_TYPE_STR(type, size) select_vec_dt_##type(size)
#define SELECT_VEC_DATA_TYPE(type, size) SELECT_VEC_DATA_TYPE_STR(type, size)
#define SELECT_DATA_TYPE(type) SELECT_VEC_DATA_TYPE_STR(type, 1)
#define signed_int_vec_dt_uchar(size) char##size
#define signed_int_vec_dt_char(size) char##size
#define signed_int_vec_dt_ushort(size) short##size
#define signed_int_vec_dt_short(size) short##size
#define signed_int_vec_dt_half(size) short##size
#define signed_int_vec_dt_uint(size) int##size
#define signed_int_vec_dt_int(size) int##size
#define signed_int_vec_dt_float(size) int##size
#define signed_int_vec_dt_ulong(size) long##size
#define signed_int_vec_dt_long(size) long##size
#define SIGNED_INT_VEC_DATA_TYPE_STR(type, size) signed_int_vec_dt_##type(size)
#define SIGNED_INT_VEC_DATA_TYPE(type, size) SIGNED_INT_VEC_DATA_TYPE_STR(type, size)
#define SIGNED_INT_DATA_TYPE(type) SIGNED_INT_VEC_DATA_TYPE_STR(type, 1)
#define sum_reduce_1(x) (x)
#define sum_reduce_2(x) ((x).s0) + ((x).s1)
#define sum_reduce_3(x) sum_reduce_2((x).s01) + ((x).s2)
#define sum_reduce_4(x) sum_reduce_2((x).s01) + sum_reduce_2((x).s23)
#define sum_reduce_8(x) sum_reduce_4((x).s0123) + sum_reduce_4((x).s4567)
#define sum_reduce_16(x) sum_reduce_8((x).s01234567) + sum_reduce_8((x).s89ABCDEF)
#define SUM_REDUCE_STR(x, size) sum_reduce_##size(x)
#define SUM_REDUCE(x, size) SUM_REDUCE_STR(x, size)
#define prod_reduce_1(x) (x)
#define prod_reduce_2(x) ((x).s0) * ((x).s1)
#define prod_reduce_3(x) prod_reduce_2((x).s01) * ((x).s2)
#define prod_reduce_4(x) prod_reduce_2((x).s01) * prod_reduce_2((x).s23)
#define prod_reduce_8(x) prod_reduce_4((x).s0123) * prod_reduce_4((x).s4567)
#define prod_reduce_16(x) prod_reduce_8((x).s01234567) * prod_reduce_8((x).s89ABCDEF)
#define PROD_REDUCE_STR(x, size) prod_reduce_##size(x)
#define PROD_REDUCE(x, size) PROD_REDUCE_STR(x, size)
#define max_reduce_1(x) (x)
#define max_reduce_2(x) max(((x).s0), ((x).s1))
#define max_reduce_3(x) max(max_reduce_2((x).s01), ((x).s2))
#define max_reduce_4(x) max(max_reduce_2((x).s01), max_reduce_2((x).s23))
#define max_reduce_8(x) max(max_reduce_4((x).s0123), max_reduce_4((x).s4567))
#define max_reduce_16(x) max(max_reduce_8((x).s01234567), max_reduce_8((x).s89ABCDEF))
#define MAX_REDUCE_STR(x, size) max_reduce_##size(x)
#define MAX_REDUCE(x, size) MAX_REDUCE_STR(x, size)
#define VECTOR_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_offset_first_element_in_bytes
#define IMAGE_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_offset_first_element_in_bytes
#define TENSOR3D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_offset_first_element_in_bytes
#define TENSOR4D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_stride_w, \
uint name##_step_w, \
uint name##_offset_first_element_in_bytes
#define CONVERT_TO_VECTOR_STRUCT(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x)
#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0)
#define CONVERT_TO_IMAGE_STRUCT(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y)
#define CONVERT_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0)
#define CONVERT_TO_TENSOR4D_STRUCT(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z, name##_stride_w, name##_step_w, mod_size)
#define CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0, name##_stride_w, 0, mod_size)
#define CONVERT_TO_TENSOR3D_STRUCT_NO_UPDATE_PTR(name) \
tensor3D_ptr_no_update(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z)
/** Structure to hold Vector information */
typedef struct Vector
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
} Vector;
/** Structure to hold Image information */
typedef struct Image
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
} Image;
/** Structure to hold 3D tensor information */
typedef struct Tensor3D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
} Tensor3D;
/** Structure to hold 4D tensor information */
typedef struct Tensor4D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
int stride_w; /**< Stride of the image in W dimension (in bytes) */
} Tensor4D;
/** Wrap vector information into an Vector structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source vector
* @param[in] stride_x Stride of the vector in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
*
* @return An image object
*/
inline Vector update_vector_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x)
{
Vector vector =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
};
vector.ptr += vector.offset_first_element_in_bytes + get_global_id(0) * step_x;
return vector;
}
/** Wrap image information into an Image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
*
* @return An image object
*/
inline Image update_image_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y;
return img;
}
/** Wrap 3D tensor information into an image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Image update_image_from_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return img;
}
/** Wrap 3D tensor information into an tensor structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Tensor3D update_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Tensor3D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return tensor;
}
/** Wrap 3D tensor information into an tensor structure.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Tensor3D tensor3D_ptr_no_update(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Tensor3D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z
};
return tensor;
}
inline Tensor4D update_tensor4D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z, uint stride_w,
uint step_w,
uint mod_size)
{
Tensor4D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z,
.stride_w = stride_w
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + (get_global_id(2) % mod_size) * step_z + (get_global_id(2) / mod_size) * step_w;
return tensor;
}
/** Get the pointer position of a Vector
*
* @param[in] vec Pointer to the starting position of the buffer
* @param[in] x Relative X position
*/
inline __global const uchar *vector_offset(const Vector *vec, int x)
{
return vec->ptr + x * vec->stride_x;
}
/** Get the pointer position of a Image
*
* @param[in] img Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
*/
inline __global uchar *offset(const Image *img, int x, int y)
{
return img->ptr + x * img->stride_x + y * img->stride_y;
}
/** Get the pointer position of a Tensor3D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
*/
inline __global const uchar *tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z;
}
/** Get the pointer position of a Tensor4D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
* @param[in] w Relative W position
*/
inline __global const uchar *tensor4D_offset(const Tensor4D *tensor, int x, int y, int z, int w)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z + w * tensor->stride_w;
}
/** Get the offset for a given linear index of a Tensor3D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] width Width of the input tensor
* @param[in] height Height of the input tensor
* @param[in] depth Depth of the input tensor
* @param[in] index Linear index
*/
inline __global const uchar *tensor3D_index2ptr(const Tensor3D *tensor, uint width, uint height, uint depth, uint index)
{
uint num_elements = width * height;
const uint z = index / num_elements;
index %= num_elements;
const uint y = index / width;
index %= width;
const uint x = index;
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z + tensor->offset_first_element_in_bytes;
}
#endif // _HELPER_H