blob: 9a48ae6d73b48fa5d765b60fa0da6e2ead79645b [file] [log] [blame]
/* SanitizeCoverage.cpp ported to afl++ LTO :-) */
#define AFL_LLVM_PASS
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <list>
#include <string>
#include <fstream>
#include <set>
#include <iostream>
#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SpecialCaseList.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/IR/PassManager.h"
#include "config.h"
#include "debug.h"
#include "afl-llvm-common.h"
using namespace llvm;
#define DEBUG_TYPE "sancov"
const char SanCovTracePCIndirName[] = "__sanitizer_cov_trace_pc_indir";
const char SanCovTracePCName[] = "__sanitizer_cov_trace_pc";
// const char SanCovTracePCGuardName =
// "__sanitizer_cov_trace_pc_guard";
const char SanCovGuardsSectionName[] = "sancov_guards";
const char SanCovCountersSectionName[] = "sancov_cntrs";
const char SanCovBoolFlagSectionName[] = "sancov_bools";
const char SanCovPCsSectionName[] = "sancov_pcs";
static cl::opt<int> ClCoverageLevel(
"lto-coverage-level",
cl::desc("Sanitizer Coverage. 0: none, 1: entry block, 2: all blocks, "
"3: all blocks and critical edges"),
cl::Hidden, cl::init(3));
static cl::opt<bool> ClTracePC("lto-coverage-trace-pc",
cl::desc("Experimental pc tracing"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClTracePCGuard("lto-coverage-trace-pc-guard",
cl::desc("pc tracing with a guard"),
cl::Hidden, cl::init(false));
// If true, we create a global variable that contains PCs of all instrumented
// BBs, put this global into a named section, and pass this section's bounds
// to __sanitizer_cov_pcs_init.
// This way the coverage instrumentation does not need to acquire the PCs
// at run-time. Works with trace-pc-guard, inline-8bit-counters, and
// inline-bool-flag.
static cl::opt<bool> ClCreatePCTable("lto-coverage-pc-table",
cl::desc("create a static PC table"),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClInline8bitCounters(
"lto-coverage-inline-8bit-counters",
cl::desc("increments 8-bit counter for every edge"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClInlineBoolFlag(
"lto-coverage-inline-bool-flag",
cl::desc("sets a boolean flag for every edge"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClPruneBlocks(
"lto-coverage-prune-blocks",
cl::desc("Reduce the number of instrumented blocks"), cl::Hidden,
cl::init(true));
namespace {
SanitizerCoverageOptions getOptions(int LegacyCoverageLevel) {
SanitizerCoverageOptions Res;
switch (LegacyCoverageLevel) {
case 0:
Res.CoverageType = SanitizerCoverageOptions::SCK_None;
break;
case 1:
Res.CoverageType = SanitizerCoverageOptions::SCK_Function;
break;
case 2:
Res.CoverageType = SanitizerCoverageOptions::SCK_BB;
break;
case 3:
Res.CoverageType = SanitizerCoverageOptions::SCK_Edge;
break;
case 4:
Res.CoverageType = SanitizerCoverageOptions::SCK_Edge;
Res.IndirectCalls = true;
break;
}
return Res;
}
SanitizerCoverageOptions OverrideFromCL(SanitizerCoverageOptions Options) {
// Sets CoverageType and IndirectCalls.
SanitizerCoverageOptions CLOpts = getOptions(ClCoverageLevel);
Options.CoverageType = std::max(Options.CoverageType, CLOpts.CoverageType);
Options.IndirectCalls |= CLOpts.IndirectCalls;
Options.TracePC |= ClTracePC;
Options.TracePCGuard |= ClTracePCGuard;
Options.Inline8bitCounters |= ClInline8bitCounters;
Options.InlineBoolFlag |= ClInlineBoolFlag;
Options.PCTable |= ClCreatePCTable;
Options.NoPrune |= !ClPruneBlocks;
if (!Options.TracePCGuard && !Options.TracePC &&
!Options.Inline8bitCounters && !Options.InlineBoolFlag)
Options.TracePCGuard = true; // TracePCGuard is default.
return Options;
}
using DomTreeCallback = function_ref<const DominatorTree *(Function &F)>;
using PostDomTreeCallback =
function_ref<const PostDominatorTree *(Function &F)>;
class ModuleSanitizerCoverageLTO
: public PassInfoMixin<ModuleSanitizerCoverageLTO> {
public:
ModuleSanitizerCoverageLTO(
const SanitizerCoverageOptions &Options = SanitizerCoverageOptions())
: Options(OverrideFromCL(Options)) {
}
bool instrumentModule(Module &M, DomTreeCallback DTCallback,
PostDomTreeCallback PDTCallback);
PreservedAnalyses run(Module &M, ModuleAnalysisManager &MAM);
private:
void instrumentFunction(Function &F, DomTreeCallback DTCallback,
PostDomTreeCallback PDTCallback);
void InjectCoverageForIndirectCalls(Function & F,
ArrayRef<Instruction *> IndirCalls);
bool InjectCoverage(Function &F, ArrayRef<BasicBlock *> AllBlocks,
bool IsLeafFunc = true);
GlobalVariable *CreateFunctionLocalArrayInSection(size_t NumElements,
Function &F, Type *Ty,
const char *Section);
GlobalVariable *CreatePCArray(Function &F, ArrayRef<BasicBlock *> AllBlocks);
void CreateFunctionLocalArrays(Function &F, ArrayRef<BasicBlock *> AllBlocks);
void InjectCoverageAtBlock(Function &F, BasicBlock &BB, size_t Idx,
bool IsLeafFunc = true);
// std::pair<Value *, Value *> CreateSecStartEnd(Module &M, const char
// *Section,
// Type *Ty);
void SetNoSanitizeMetadata(Instruction *I) {
I->setMetadata(I->getModule()->getMDKindID("nosanitize"),
MDNode::get(*C, None));
}
std::string getSectionName(const std::string &Section) const;
// std::string getSectionStart(const std::string &Section) const;
// std::string getSectionEnd(const std::string &Section) const;
FunctionCallee SanCovTracePCIndir;
FunctionCallee SanCovTracePC /*, SanCovTracePCGuard*/;
Type *IntptrTy, *IntptrPtrTy, *Int64Ty, *Int64PtrTy, *Int32Ty, *Int32PtrTy,
*Int16Ty, *Int8Ty, *Int8PtrTy, *Int1Ty, *Int1PtrTy;
Module * CurModule;
std::string CurModuleUniqueId;
Triple TargetTriple;
LLVMContext * C;
const DataLayout *DL;
GlobalVariable *FunctionGuardArray; // for trace-pc-guard.
GlobalVariable *Function8bitCounterArray; // for inline-8bit-counters.
GlobalVariable *FunctionBoolArray; // for inline-bool-flag.
GlobalVariable *FunctionPCsArray; // for pc-table.
SmallVector<GlobalValue *, 20> GlobalsToAppendToUsed;
SmallVector<GlobalValue *, 20> GlobalsToAppendToCompilerUsed;
SanitizerCoverageOptions Options;
// afl++ START
// const SpecialCaseList * Allowlist;
// const SpecialCaseList * Blocklist;
uint32_t autodictionary = 1;
uint32_t inst = 0;
uint32_t afl_global_id = 0;
uint32_t unhandled = 0;
uint32_t select_cnt = 0;
uint64_t map_addr = 0;
const char * skip_nozero = NULL;
const char * use_threadsafe_counters = nullptr;
std::vector<BasicBlock *> BlockList;
DenseMap<Value *, std::string *> valueMap;
std::vector<std::string> dictionary;
IntegerType * Int8Tyi = NULL;
IntegerType * Int32Tyi = NULL;
IntegerType * Int64Tyi = NULL;
ConstantInt * Zero = NULL;
ConstantInt * One = NULL;
LLVMContext * Ct = NULL;
Module * Mo = NULL;
GlobalVariable * AFLMapPtr = NULL;
Value * MapPtrFixed = NULL;
std::ofstream dFile;
size_t found = 0;
// afl++ END
};
class ModuleSanitizerCoverageLegacyPass : public ModulePass {
public:
static char ID;
StringRef getPassName() const override {
return "sancov";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<PostDominatorTreeWrapperPass>();
}
ModuleSanitizerCoverageLegacyPass(
const SanitizerCoverageOptions &Options = SanitizerCoverageOptions())
: ModulePass(ID), Options(Options) {
initializeModuleSanitizerCoverageLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
ModuleSanitizerCoverageLTO ModuleSancov(Options);
auto DTCallback = [this](Function &F) -> const DominatorTree * {
return &this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
};
auto PDTCallback = [this](Function &F) -> const PostDominatorTree * {
return &this->getAnalysis<PostDominatorTreeWrapperPass>(F)
.getPostDomTree();
};
return ModuleSancov.instrumentModule(M, DTCallback, PDTCallback);
}
private:
SanitizerCoverageOptions Options;
};
} // namespace
extern "C" ::llvm::PassPluginLibraryInfo LLVM_ATTRIBUTE_WEAK
llvmGetPassPluginInfo() {
return {LLVM_PLUGIN_API_VERSION, "SanitizerCoverageLTO", "v0.1",
/* lambda to insert our pass into the pass pipeline. */
[](PassBuilder &PB) {
#if LLVM_VERSION_MAJOR <= 13
using OptimizationLevel = typename PassBuilder::OptimizationLevel;
#endif
// PB.registerFullLinkTimeOptimizationLastEPCallback(
PB.registerOptimizerLastEPCallback(
[](ModulePassManager &MPM, OptimizationLevel OL) {
MPM.addPass(ModuleSanitizerCoverageLTO());
});
}};
}
PreservedAnalyses ModuleSanitizerCoverageLTO::run(Module & M,
ModuleAnalysisManager &MAM) {
ModuleSanitizerCoverageLTO ModuleSancov(Options);
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto DTCallback = [&FAM](Function &F) -> const DominatorTree * {
return &FAM.getResult<DominatorTreeAnalysis>(F);
};
auto PDTCallback = [&FAM](Function &F) -> const PostDominatorTree * {
return &FAM.getResult<PostDominatorTreeAnalysis>(F);
};
if (ModuleSancov.instrumentModule(M, DTCallback, PDTCallback))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
bool ModuleSanitizerCoverageLTO::instrumentModule(
Module &M, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) {
if (Options.CoverageType == SanitizerCoverageOptions::SCK_None) return false;
/*
if (Allowlist &&
!Allowlist->inSection("coverage", "src", MNAME))
return false;
if (Blocklist &&
Blocklist->inSection("coverage", "src", MNAME))
return false;
*/
BlockList.clear();
valueMap.clear();
dictionary.clear();
C = &(M.getContext());
DL = &M.getDataLayout();
CurModule = &M;
CurModuleUniqueId = getUniqueModuleId(CurModule);
TargetTriple = Triple(M.getTargetTriple());
FunctionGuardArray = nullptr;
Function8bitCounterArray = nullptr;
FunctionBoolArray = nullptr;
FunctionPCsArray = nullptr;
IntptrTy = Type::getIntNTy(*C, DL->getPointerSizeInBits());
IntptrPtrTy = PointerType::getUnqual(IntptrTy);
Type * VoidTy = Type::getVoidTy(*C);
IRBuilder<> IRB(*C);
Int64PtrTy = PointerType::getUnqual(IRB.getInt64Ty());
Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
Int8PtrTy = PointerType::getUnqual(IRB.getInt8Ty());
Int1PtrTy = PointerType::getUnqual(IRB.getInt1Ty());
Int64Ty = IRB.getInt64Ty();
Int32Ty = IRB.getInt32Ty();
Int16Ty = IRB.getInt16Ty();
Int8Ty = IRB.getInt8Ty();
Int1Ty = IRB.getInt1Ty();
/* afl++ START */
char * ptr;
LLVMContext &Ctx = M.getContext();
Ct = &Ctx;
Int8Tyi = IntegerType::getInt8Ty(Ctx);
Int32Tyi = IntegerType::getInt32Ty(Ctx);
Int64Tyi = IntegerType::getInt64Ty(Ctx);
/* Show a banner */
setvbuf(stdout, NULL, _IONBF, 0);
if (getenv("AFL_DEBUG")) debug = 1;
if ((isatty(2) && !getenv("AFL_QUIET")) || debug) {
SAYF(cCYA "afl-llvm-lto" VERSION cRST
" by Marc \"vanHauser\" Heuse <mh@mh-sec.de>\n");
} else
be_quiet = 1;
skip_nozero = getenv("AFL_LLVM_SKIP_NEVERZERO");
use_threadsafe_counters = getenv("AFL_LLVM_THREADSAFE_INST");
if ((ptr = getenv("AFL_LLVM_LTO_STARTID")) != NULL)
if ((afl_global_id = atoi(ptr)) < 0)
FATAL("AFL_LLVM_LTO_STARTID value of \"%s\" is negative\n", ptr);
if ((ptr = getenv("AFL_LLVM_DOCUMENT_IDS")) != NULL) {
dFile.open(ptr, std::ofstream::out | std::ofstream::app);
if (dFile.is_open()) WARNF("Cannot access document file %s", ptr);
}
// we make this the default as the fixed map has problems with
// defered forkserver, early constructors, ifuncs and maybe more
/*if (getenv("AFL_LLVM_MAP_DYNAMIC"))*/
map_addr = 0;
if ((ptr = getenv("AFL_LLVM_MAP_ADDR"))) {
uint64_t val;
if (!*ptr || !strcmp(ptr, "0") || !strcmp(ptr, "0x0")) {
map_addr = 0;
} else if (getenv("AFL_LLVM_MAP_DYNAMIC")) {
FATAL(
"AFL_LLVM_MAP_ADDR and AFL_LLVM_MAP_DYNAMIC cannot be used together");
} else if (strncmp(ptr, "0x", 2) != 0) {
map_addr = 0x10000; // the default
} else {
val = strtoull(ptr, NULL, 16);
if (val < 0x100 || val > 0xffffffff00000000) {
FATAL(
"AFL_LLVM_MAP_ADDR must be a value between 0x100 and "
"0xffffffff00000000");
}
map_addr = val;
}
}
/* Get/set the globals for the SHM region. */
if (!map_addr) {
AFLMapPtr =
new GlobalVariable(M, PointerType::get(Int8Tyi, 0), false,
GlobalValue::ExternalLinkage, 0, "__afl_area_ptr");
} else {
ConstantInt *MapAddr = ConstantInt::get(Int64Tyi, map_addr);
MapPtrFixed =
ConstantExpr::getIntToPtr(MapAddr, PointerType::getUnqual(Int8Tyi));
}
Zero = ConstantInt::get(Int8Tyi, 0);
One = ConstantInt::get(Int8Tyi, 1);
initInstrumentList();
scanForDangerousFunctions(&M);
Mo = &M;
if (autodictionary) {
for (auto &F : M) {
if (!isInInstrumentList(&F, MNAME) || !F.size()) { continue; }
for (auto &BB : F) {
for (auto &IN : BB) {
CallInst *callInst = nullptr;
CmpInst * cmpInst = nullptr;
if ((cmpInst = dyn_cast<CmpInst>(&IN))) {
Value * op = cmpInst->getOperand(1);
ConstantInt *ilen = dyn_cast<ConstantInt>(op);
if (ilen && ilen->uge(0xffffffffffffffff) == false) {
u64 val2 = 0, val = ilen->getZExtValue();
u32 len = 0;
if (val > 0x10000 && val < 0xffffffff) len = 4;
if (val > 0x100000001 && val < 0xffffffffffffffff) len = 8;
if (len) {
auto c = cmpInst->getPredicate();
switch (c) {
case CmpInst::FCMP_OGT: // fall through
case CmpInst::FCMP_OLE: // fall through
case CmpInst::ICMP_SLE: // fall through
case CmpInst::ICMP_SGT:
// signed comparison and it is a negative constant
if ((len == 4 && (val & 80000000)) ||
(len == 8 && (val & 8000000000000000))) {
if ((val & 0xffff) != 1) val2 = val - 1;
break;
}
// fall through
case CmpInst::FCMP_UGT: // fall through
case CmpInst::FCMP_ULE: // fall through
case CmpInst::ICMP_UGT: // fall through
case CmpInst::ICMP_ULE:
if ((val & 0xffff) != 0xfffe) val2 = val + 1;
break;
case CmpInst::FCMP_OLT: // fall through
case CmpInst::FCMP_OGE: // fall through
case CmpInst::ICMP_SLT: // fall through
case CmpInst::ICMP_SGE:
// signed comparison and it is a negative constant
if ((len == 4 && (val & 80000000)) ||
(len == 8 && (val & 8000000000000000))) {
if ((val & 0xffff) != 1) val2 = val - 1;
break;
}
// fall through
case CmpInst::FCMP_ULT: // fall through
case CmpInst::FCMP_UGE: // fall through
case CmpInst::ICMP_ULT: // fall through
case CmpInst::ICMP_UGE:
if ((val & 0xffff) != 1) val2 = val - 1;
break;
default:
val2 = 0;
}
dictionary.push_back(std::string((char *)&val, len));
found++;
if (val2) {
dictionary.push_back(std::string((char *)&val2, len));
found++;
}
}
}
}
if ((callInst = dyn_cast<CallInst>(&IN))) {
bool isStrcmp = true;
bool isMemcmp = true;
bool isStrncmp = true;
bool isStrcasecmp = true;
bool isStrncasecmp = true;
bool isIntMemcpy = true;
bool isStdString = true;
size_t optLen = 0;
Function *Callee = callInst->getCalledFunction();
if (!Callee) continue;
if (callInst->getCallingConv() != llvm::CallingConv::C) continue;
std::string FuncName = Callee->getName().str();
isStrcmp &= (!FuncName.compare("strcmp") ||
!FuncName.compare("xmlStrcmp") ||
!FuncName.compare("xmlStrEqual") ||
!FuncName.compare("g_strcmp0") ||
!FuncName.compare("curl_strequal") ||
!FuncName.compare("strcsequal"));
isMemcmp &=
(!FuncName.compare("memcmp") || !FuncName.compare("bcmp") ||
!FuncName.compare("CRYPTO_memcmp") ||
!FuncName.compare("OPENSSL_memcmp") ||
!FuncName.compare("memcmp_const_time") ||
!FuncName.compare("memcmpct"));
isStrncmp &= (!FuncName.compare("strncmp") ||
!FuncName.compare("xmlStrncmp") ||
!FuncName.compare("curl_strnequal"));
isStrcasecmp &= (!FuncName.compare("strcasecmp") ||
!FuncName.compare("stricmp") ||
!FuncName.compare("ap_cstr_casecmp") ||
!FuncName.compare("OPENSSL_strcasecmp") ||
!FuncName.compare("xmlStrcasecmp") ||
!FuncName.compare("g_strcasecmp") ||
!FuncName.compare("g_ascii_strcasecmp") ||
!FuncName.compare("Curl_strcasecompare") ||
!FuncName.compare("Curl_safe_strcasecompare") ||
!FuncName.compare("cmsstrcasecmp"));
isStrncasecmp &= (!FuncName.compare("strncasecmp") ||
!FuncName.compare("strnicmp") ||
!FuncName.compare("ap_cstr_casecmpn") ||
!FuncName.compare("OPENSSL_strncasecmp") ||
!FuncName.compare("xmlStrncasecmp") ||
!FuncName.compare("g_ascii_strncasecmp") ||
!FuncName.compare("Curl_strncasecompare") ||
!FuncName.compare("g_strncasecmp"));
isIntMemcpy &= !FuncName.compare("llvm.memcpy.p0i8.p0i8.i64");
isStdString &=
((FuncName.find("basic_string") != std::string::npos &&
FuncName.find("compare") != std::string::npos) ||
(FuncName.find("basic_string") != std::string::npos &&
FuncName.find("find") != std::string::npos));
/* we do something different here, putting this BB and the
successors in a block map */
if (!FuncName.compare("__afl_persistent_loop")) {
BlockList.push_back(&BB);
for (succ_iterator SI = succ_begin(&BB), SE = succ_end(&BB);
SI != SE; ++SI) {
BasicBlock *succ = *SI;
BlockList.push_back(succ);
}
}
if (!isStrcmp && !isMemcmp && !isStrncmp && !isStrcasecmp &&
!isStrncasecmp && !isIntMemcpy && !isStdString)
continue;
/* Verify the strcmp/memcmp/strncmp/strcasecmp/strncasecmp function
* prototype */
FunctionType *FT = Callee->getFunctionType();
isStrcmp &= FT->getNumParams() == 2 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext());
isStrcasecmp &= FT->getNumParams() == 2 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext());
isMemcmp &= FT->getNumParams() == 3 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0)->isPointerTy() &&
FT->getParamType(1)->isPointerTy() &&
FT->getParamType(2)->isIntegerTy();
isStrncmp &= FT->getNumParams() == 3 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext()) &&
FT->getParamType(2)->isIntegerTy();
isStrncasecmp &= FT->getNumParams() == 3 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext()) &&
FT->getParamType(2)->isIntegerTy();
isStdString &= FT->getNumParams() >= 2 &&
FT->getParamType(0)->isPointerTy() &&
FT->getParamType(1)->isPointerTy();
if (!isStrcmp && !isMemcmp && !isStrncmp && !isStrcasecmp &&
!isStrncasecmp && !isIntMemcpy && !isStdString)
continue;
/* is a str{n,}{case,}cmp/memcmp, check if we have
* str{case,}cmp(x, "const") or str{case,}cmp("const", x)
* strn{case,}cmp(x, "const", ..) or strn{case,}cmp("const", x, ..)
* memcmp(x, "const", ..) or memcmp("const", x, ..) */
Value *Str1P = callInst->getArgOperand(0),
*Str2P = callInst->getArgOperand(1);
std::string Str1, Str2;
StringRef TmpStr;
bool HasStr1 = getConstantStringInfo(Str1P, TmpStr);
if (TmpStr.empty())
HasStr1 = false;
else
Str1 = TmpStr.str();
bool HasStr2 = getConstantStringInfo(Str2P, TmpStr);
if (TmpStr.empty())
HasStr2 = false;
else
Str2 = TmpStr.str();
if (debug)
fprintf(stderr, "F:%s %p(%s)->\"%s\"(%s) %p(%s)->\"%s\"(%s)\n",
FuncName.c_str(), Str1P, Str1P->getName().str().c_str(),
Str1.c_str(), HasStr1 == true ? "true" : "false", Str2P,
Str2P->getName().str().c_str(), Str2.c_str(),
HasStr2 == true ? "true" : "false");
// we handle the 2nd parameter first because of llvm memcpy
if (!HasStr2) {
auto *Ptr = dyn_cast<ConstantExpr>(Str2P);
if (Ptr && Ptr->getOpcode() == Instruction::GetElementPtr) {
if (auto *Var = dyn_cast<GlobalVariable>(Ptr->getOperand(0))) {
if (Var->hasInitializer()) {
if (auto *Array = dyn_cast<ConstantDataArray>(
Var->getInitializer())) {
HasStr2 = true;
Str2 = Array->getRawDataValues().str();
}
}
}
}
}
// for the internal memcpy routine we only care for the second
// parameter and are not reporting anything.
if (isIntMemcpy == true) {
if (HasStr2 == true) {
Value * op2 = callInst->getArgOperand(2);
ConstantInt *ilen = dyn_cast<ConstantInt>(op2);
if (ilen) {
uint64_t literalLength = Str2.size();
uint64_t optLength = ilen->getZExtValue();
if (optLength > literalLength + 1) {
optLength = Str2.length() + 1;
}
if (literalLength + 1 == optLength) {
Str2.append("\0", 1); // add null byte
}
}
valueMap[Str1P] = new std::string(Str2);
if (debug)
fprintf(stderr, "Saved: %s for %p\n", Str2.c_str(), Str1P);
continue;
}
continue;
}
// Neither a literal nor a global variable?
// maybe it is a local variable that we saved
if (!HasStr2) {
std::string *strng = valueMap[Str2P];
if (strng && !strng->empty()) {
Str2 = *strng;
HasStr2 = true;
if (debug)
fprintf(stderr, "Filled2: %s for %p\n", strng->c_str(),
Str2P);
}
}
if (!HasStr1) {
auto Ptr = dyn_cast<ConstantExpr>(Str1P);
if (Ptr && Ptr->getOpcode() == Instruction::GetElementPtr) {
if (auto *Var = dyn_cast<GlobalVariable>(Ptr->getOperand(0))) {
if (Var->hasInitializer()) {
if (auto *Array = dyn_cast<ConstantDataArray>(
Var->getInitializer())) {
HasStr1 = true;
Str1 = Array->getRawDataValues().str();
}
}
}
}
}
// Neither a literal nor a global variable?
// maybe it is a local variable that we saved
if (!HasStr1) {
std::string *strng = valueMap[Str1P];
if (strng && !strng->empty()) {
Str1 = *strng;
HasStr1 = true;
if (debug)
fprintf(stderr, "Filled1: %s for %p\n", strng->c_str(),
Str1P);
}
}
/* handle cases of one string is const, one string is variable */
if (!(HasStr1 ^ HasStr2)) continue;
std::string thestring;
if (HasStr1)
thestring = Str1;
else
thestring = Str2;
optLen = thestring.length();
if (optLen < 2 || (optLen == 2 && !thestring[1])) { continue; }
if (isMemcmp || isStrncmp || isStrncasecmp) {
Value * op2 = callInst->getArgOperand(2);
ConstantInt *ilen = dyn_cast<ConstantInt>(op2);
if (ilen) {
uint64_t literalLength = optLen;
optLen = ilen->getZExtValue();
if (optLen > thestring.length() + 1) {
optLen = thestring.length() + 1;
}
if (optLen < 2) { continue; }
if (literalLength + 1 == optLen) { // add null byte
thestring.append("\0", 1);
}
}
}
// add null byte if this is a string compare function and a null
// was not already added
if (!isMemcmp) {
/*
if (addedNull == false && thestring[optLen - 1] !=
'\0') {
thestring.append("\0", 1); // add null byte
optLen++;
}
*/
if (!isStdString &&
thestring.find('\0', 0) != std::string::npos) {
// ensure we do not have garbage
size_t offset = thestring.find('\0', 0);
if (offset + 1 < optLen) optLen = offset + 1;
thestring = thestring.substr(0, optLen);
}
}
if (!be_quiet) {
std::string outstring;
fprintf(stderr, "%s: length %zu/%zu \"", FuncName.c_str(), optLen,
thestring.length());
for (uint8_t i = 0; i < thestring.length(); i++) {
uint8_t c = thestring[i];
if (c <= 32 || c >= 127)
fprintf(stderr, "\\x%02x", c);
else
fprintf(stderr, "%c", c);
}
fprintf(stderr, "\"\n");
}
// we take the longer string, even if the compare was to a
// shorter part. Note that depending on the optimizer of the
// compiler this can be wrong, but it is more likely that this
// is helping the fuzzer
if (optLen != thestring.length()) optLen = thestring.length();
if (optLen > MAX_AUTO_EXTRA) optLen = MAX_AUTO_EXTRA;
if (optLen < MIN_AUTO_EXTRA) // too short? skip
continue;
dictionary.push_back(thestring.substr(0, optLen));
}
}
}
}
}
// afl++ END
SanCovTracePCIndir =
M.getOrInsertFunction(SanCovTracePCIndirName, VoidTy, IntptrTy);
// Make sure smaller parameters are zero-extended to i64 as required by the
// x86_64 ABI.
AttributeList SanCovTraceCmpZeroExtAL;
if (TargetTriple.getArch() == Triple::x86_64) {
SanCovTraceCmpZeroExtAL =
SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 0, Attribute::ZExt);
SanCovTraceCmpZeroExtAL =
SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 1, Attribute::ZExt);
}
SanCovTracePC = M.getOrInsertFunction(SanCovTracePCName, VoidTy);
// SanCovTracePCGuard =
// M.getOrInsertFunction(SanCovTracePCGuardName, VoidTy, Int32PtrTy);
for (auto &F : M)
instrumentFunction(F, DTCallback, PDTCallback);
// afl++ START
if (dFile.is_open()) dFile.close();
if (!getenv("AFL_LLVM_LTO_DONTWRITEID") || dictionary.size() || map_addr) {
// yes we could create our own function, insert it into ctors ...
// but this would be a pain in the butt ... so we use afl-llvm-rt-lto.o
Function *f = M.getFunction("__afl_auto_init_globals");
if (!f) {
fprintf(stderr,
"Error: init function could not be found (this should not "
"happen)\n");
exit(-1);
}
BasicBlock *bb = &f->getEntryBlock();
if (!bb) {
fprintf(stderr,
"Error: init function does not have an EntryBlock (this should "
"not happen)\n");
exit(-1);
}
BasicBlock::iterator IP = bb->getFirstInsertionPt();
IRBuilder<> IRB(&(*IP));
if (map_addr) {
GlobalVariable *AFLMapAddrFixed = new GlobalVariable(
M, Int64Tyi, true, GlobalValue::ExternalLinkage, 0, "__afl_map_addr");
ConstantInt *MapAddr = ConstantInt::get(Int64Tyi, map_addr);
StoreInst * StoreMapAddr = IRB.CreateStore(MapAddr, AFLMapAddrFixed);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(StoreMapAddr);
}
if (getenv("AFL_LLVM_LTO_DONTWRITEID") == NULL) {
uint32_t write_loc = afl_global_id;
write_loc = (((afl_global_id + 8) >> 3) << 3);
GlobalVariable *AFLFinalLoc =
new GlobalVariable(M, Int32Tyi, true, GlobalValue::ExternalLinkage, 0,
"__afl_final_loc");
ConstantInt *const_loc = ConstantInt::get(Int32Tyi, write_loc);
StoreInst * StoreFinalLoc = IRB.CreateStore(const_loc, AFLFinalLoc);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(StoreFinalLoc);
}
if (dictionary.size()) {
size_t memlen = 0, count = 0, offset = 0;
// sort and unique the dictionary
std::sort(dictionary.begin(), dictionary.end());
auto last = std::unique(dictionary.begin(), dictionary.end());
dictionary.erase(last, dictionary.end());
for (auto token : dictionary) {
memlen += token.length();
count++;
}
if (!be_quiet)
printf("AUTODICTIONARY: %lu string%s found\n", count,
count == 1 ? "" : "s");
if (count) {
auto ptrhld = std::unique_ptr<char[]>(new char[memlen + count]);
count = 0;
for (auto token : dictionary) {
if (offset + token.length() < 0xfffff0 && count < MAX_AUTO_EXTRAS) {
ptrhld.get()[offset++] = (uint8_t)token.length();
memcpy(ptrhld.get() + offset, token.c_str(), token.length());
offset += token.length();
count++;
}
}
GlobalVariable *AFLDictionaryLen =
new GlobalVariable(M, Int32Tyi, false, GlobalValue::ExternalLinkage,
0, "__afl_dictionary_len");
ConstantInt *const_len = ConstantInt::get(Int32Tyi, offset);
StoreInst *StoreDictLen = IRB.CreateStore(const_len, AFLDictionaryLen);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(StoreDictLen);
ArrayType *ArrayTy = ArrayType::get(IntegerType::get(Ctx, 8), offset);
GlobalVariable *AFLInternalDictionary = new GlobalVariable(
M, ArrayTy, true, GlobalValue::ExternalLinkage,
ConstantDataArray::get(Ctx,
*(new ArrayRef<char>(ptrhld.get(), offset))),
"__afl_internal_dictionary");
AFLInternalDictionary->setInitializer(ConstantDataArray::get(
Ctx, *(new ArrayRef<char>(ptrhld.get(), offset))));
AFLInternalDictionary->setConstant(true);
GlobalVariable *AFLDictionary = new GlobalVariable(
M, PointerType::get(Int8Tyi, 0), false,
GlobalValue::ExternalLinkage, 0, "__afl_dictionary");
Value *AFLDictOff = IRB.CreateGEP(Int8Ty, AFLInternalDictionary, Zero);
Value *AFLDictPtr =
IRB.CreatePointerCast(AFLDictOff, PointerType::get(Int8Tyi, 0));
StoreInst *StoreDict = IRB.CreateStore(AFLDictPtr, AFLDictionary);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(StoreDict);
}
}
}
/* Say something nice. */
if (!be_quiet) {
if (!inst)
WARNF("No instrumentation targets found.");
else {
char modeline[100];
snprintf(modeline, sizeof(modeline), "%s%s%s%s%s%s",
getenv("AFL_HARDEN") ? "hardened" : "non-hardened",
getenv("AFL_USE_ASAN") ? ", ASAN" : "",
getenv("AFL_USE_MSAN") ? ", MSAN" : "",
getenv("AFL_USE_TSAN") ? ", TSAN" : "",
getenv("AFL_USE_CFISAN") ? ", CFISAN" : "",
getenv("AFL_USE_UBSAN") ? ", UBSAN" : "");
OKF("Instrumented %u locations (%u selects) without collisions (%llu "
"collisions have been avoided) (%s mode).",
inst, select_cnt, calculateCollisions(inst), modeline);
}
}
// afl++ END
// We don't reference these arrays directly in any of our runtime functions,
// so we need to prevent them from being dead stripped.
if (TargetTriple.isOSBinFormatMachO()) appendToUsed(M, GlobalsToAppendToUsed);
appendToCompilerUsed(M, GlobalsToAppendToCompilerUsed);
return true;
}
// True if block has successors and it dominates all of them.
static bool isFullDominator(const BasicBlock *BB, const DominatorTree *DT) {
if (succ_begin(BB) == succ_end(BB)) return false;
for (const BasicBlock *SUCC : make_range(succ_begin(BB), succ_end(BB))) {
if (!DT->dominates(BB, SUCC)) return false;
}
return true;
}
// True if block has predecessors and it postdominates all of them.
static bool isFullPostDominator(const BasicBlock * BB,
const PostDominatorTree *PDT) {
if (pred_begin(BB) == pred_end(BB)) return false;
for (const BasicBlock *PRED : make_range(pred_begin(BB), pred_end(BB))) {
if (!PDT->dominates(BB, PRED)) return false;
}
return true;
}
static bool shouldInstrumentBlock(const Function &F, const BasicBlock *BB,
const DominatorTree * DT,
const PostDominatorTree * PDT,
const SanitizerCoverageOptions &Options) {
// Don't insert coverage for blocks containing nothing but unreachable: we
// will never call __sanitizer_cov() for them, so counting them in
// NumberOfInstrumentedBlocks() might complicate calculation of code coverage
// percentage. Also, unreachable instructions frequently have no debug
// locations.
if (isa<UnreachableInst>(BB->getFirstNonPHIOrDbgOrLifetime())) return false;
// Don't insert coverage into blocks without a valid insertion point
// (catchswitch blocks).
if (BB->getFirstInsertionPt() == BB->end()) return false;
// afl++ START
if (!Options.NoPrune && &F.getEntryBlock() == BB && F.size() > 1)
return false;
// afl++ END
if (Options.NoPrune || &F.getEntryBlock() == BB) return true;
if (Options.CoverageType == SanitizerCoverageOptions::SCK_Function &&
&F.getEntryBlock() != BB)
return false;
// Do not instrument full dominators, or full post-dominators with multiple
// predecessors.
return !isFullDominator(BB, DT) &&
!(isFullPostDominator(BB, PDT) && !BB->getSinglePredecessor());
}
void ModuleSanitizerCoverageLTO::instrumentFunction(
Function &F, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) {
if (F.empty()) return;
if (F.getName().find(".module_ctor") != std::string::npos)
return; // Should not instrument sanitizer init functions.
if (F.getName().startswith("__sanitizer_"))
return; // Don't instrument __sanitizer_* callbacks.
// Don't touch available_externally functions, their actual body is elsewhere.
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return;
// Don't instrument MSVC CRT configuration helpers. They may run before normal
// initialization.
if (F.getName() == "__local_stdio_printf_options" ||
F.getName() == "__local_stdio_scanf_options")
return;
if (isa<UnreachableInst>(F.getEntryBlock().getTerminator())) return;
// Don't instrument functions using SEH for now. Splitting basic blocks like
// we do for coverage breaks WinEHPrepare.
// FIXME: Remove this when SEH no longer uses landingpad pattern matching.
if (F.hasPersonalityFn() &&
isAsynchronousEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
return;
// if (Allowlist && !Allowlist->inSection("coverage", "fun", F.getName()))
// return;
// if (Blocklist && Blocklist->inSection("coverage", "fun", F.getName()))
// return;
// afl++ START
if (!F.size()) return;
if (!isInInstrumentList(&F, FMNAME)) return;
// afl++ END
if (Options.CoverageType >= SanitizerCoverageOptions::SCK_Edge)
SplitAllCriticalEdges(
F, CriticalEdgeSplittingOptions().setIgnoreUnreachableDests());
SmallVector<Instruction *, 8> IndirCalls;
SmallVector<BasicBlock *, 16> BlocksToInstrument;
const DominatorTree * DT = DTCallback(F);
const PostDominatorTree *PDT = PDTCallback(F);
bool IsLeafFunc = true;
uint32_t skip_next = 0;
for (auto &BB : F) {
for (auto &IN : BB) {
CallInst *callInst = nullptr;
if ((callInst = dyn_cast<CallInst>(&IN))) {
Function *Callee = callInst->getCalledFunction();
if (!Callee) continue;
if (callInst->getCallingConv() != llvm::CallingConv::C) continue;
StringRef FuncName = Callee->getName();
if (!FuncName.compare(StringRef("dlopen")) ||
!FuncName.compare(StringRef("_dlopen"))) {
fprintf(stderr,
"WARNING: dlopen() detected. To have coverage for a library "
"that your target dlopen()'s this must either happen before "
"__AFL_INIT() or you must use AFL_PRELOAD to preload all "
"dlopen()'ed libraries!\n");
continue;
}
if (FuncName.compare(StringRef("__afl_coverage_interesting"))) continue;
Value *val = ConstantInt::get(Int32Ty, ++afl_global_id);
callInst->setOperand(1, val);
++inst;
}
SelectInst *selectInst = nullptr;
/*
std::string errMsg;
raw_string_ostream os(errMsg);
IN.print(os);
fprintf(stderr, "X(%u): %s\n", skip_next, os.str().c_str());
*/
if (!skip_next && (selectInst = dyn_cast<SelectInst>(&IN))) {
uint32_t vector_cnt = 0;
Value * condition = selectInst->getCondition();
Value * result;
auto t = condition->getType();
IRBuilder<> IRB(selectInst->getNextNode());
++select_cnt;
if (t->getTypeID() == llvm::Type::IntegerTyID) {
Value *val1 = ConstantInt::get(Int32Ty, ++afl_global_id);
Value *val2 = ConstantInt::get(Int32Ty, ++afl_global_id);
result = IRB.CreateSelect(condition, val1, val2);
skip_next = 1;
inst += 2;
} else
#if LLVM_VERSION_MAJOR >= 14
if (t->getTypeID() == llvm::Type::FixedVectorTyID) {
FixedVectorType *tt = dyn_cast<FixedVectorType>(t);
if (tt) {
uint32_t elements = tt->getElementCount().getFixedValue();
vector_cnt = elements;
inst += vector_cnt * 2;
if (elements) {
FixedVectorType *GuardPtr1 =
FixedVectorType::get(Int32Ty, elements);
FixedVectorType *GuardPtr2 =
FixedVectorType::get(Int32Ty, elements);
Value *x, *y;
Value *val1 = ConstantInt::get(Int32Ty, ++afl_global_id);
Value *val2 = ConstantInt::get(Int32Ty, ++afl_global_id);
x = IRB.CreateInsertElement(GuardPtr1, val1, (uint64_t)0);
y = IRB.CreateInsertElement(GuardPtr2, val2, (uint64_t)0);
for (uint64_t i = 1; i < elements; i++) {
val1 = ConstantInt::get(Int32Ty, ++afl_global_id);
val2 = ConstantInt::get(Int32Ty, ++afl_global_id);
x = IRB.CreateInsertElement(GuardPtr1, val1, i);
y = IRB.CreateInsertElement(GuardPtr2, val2, i);
}
result = IRB.CreateSelect(condition, x, y);
skip_next = 1;
}
}
} else
#endif
{
unhandled++;
continue;
}
uint32_t vector_cur = 0;
/* Load SHM pointer */
LoadInst *MapPtr =
IRB.CreateLoad(PointerType::get(Int8Ty, 0), AFLMapPtr);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(MapPtr);
while (1) {
/* Get CurLoc */
Value *MapPtrIdx = nullptr;
/* Load counter for CurLoc */
if (!vector_cnt) {
MapPtrIdx = IRB.CreateGEP(Int8Ty, MapPtr, result);
} else {
auto element = IRB.CreateExtractElement(result, vector_cur++);
MapPtrIdx = IRB.CreateGEP(Int8Ty, MapPtr, element);
}
if (use_threadsafe_counters) {
IRB.CreateAtomicRMW(llvm::AtomicRMWInst::BinOp::Add, MapPtrIdx, One,
#if LLVM_VERSION_MAJOR >= 13
llvm::MaybeAlign(1),
#endif
llvm::AtomicOrdering::Monotonic);
} else {
LoadInst *Counter = IRB.CreateLoad(IRB.getInt8Ty(), MapPtrIdx);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(Counter);
/* Update bitmap */
Value *Incr = IRB.CreateAdd(Counter, One);
if (skip_nozero == NULL) {
auto cf = IRB.CreateICmpEQ(Incr, Zero);
auto carry = IRB.CreateZExt(cf, Int8Ty);
Incr = IRB.CreateAdd(Incr, carry);
}
auto nosan = IRB.CreateStore(Incr, MapPtrIdx);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(nosan);
}
if (!vector_cnt || vector_cnt == vector_cur) { break; }
}
skip_next = 1;
} else {
skip_next = 0;
}
}
if (shouldInstrumentBlock(F, &BB, DT, PDT, Options))
BlocksToInstrument.push_back(&BB);
for (auto &Inst : BB) {
if (Options.IndirectCalls) {
CallBase *CB = dyn_cast<CallBase>(&Inst);
if (CB && !CB->getCalledFunction()) IndirCalls.push_back(&Inst);
}
}
}
InjectCoverage(F, BlocksToInstrument, IsLeafFunc);
InjectCoverageForIndirectCalls(F, IndirCalls);
}
GlobalVariable *ModuleSanitizerCoverageLTO::CreateFunctionLocalArrayInSection(
size_t NumElements, Function &F, Type *Ty, const char *Section) {
ArrayType *ArrayTy = ArrayType::get(Ty, NumElements);
auto Array = new GlobalVariable(
*CurModule, ArrayTy, false, GlobalVariable::PrivateLinkage,
Constant::getNullValue(ArrayTy), "__sancov_gen_");
#if LLVM_VERSION_MAJOR >= 13
if (TargetTriple.supportsCOMDAT() &&
(TargetTriple.isOSBinFormatELF() || !F.isInterposable()))
if (auto Comdat = getOrCreateFunctionComdat(F, TargetTriple))
Array->setComdat(Comdat);
#else
if (TargetTriple.supportsCOMDAT() && !F.isInterposable())
if (auto Comdat =
GetOrCreateFunctionComdat(F, TargetTriple, CurModuleUniqueId))
Array->setComdat(Comdat);
#endif
Array->setSection(getSectionName(Section));
Array->setAlignment(Align(DL->getTypeStoreSize(Ty).getFixedSize()));
GlobalsToAppendToUsed.push_back(Array);
GlobalsToAppendToCompilerUsed.push_back(Array);
MDNode *MD = MDNode::get(F.getContext(), ValueAsMetadata::get(&F));
Array->addMetadata(LLVMContext::MD_associated, *MD);
return Array;
}
GlobalVariable *ModuleSanitizerCoverageLTO::CreatePCArray(
Function &F, ArrayRef<BasicBlock *> AllBlocks) {
size_t N = AllBlocks.size();
assert(N);
SmallVector<Constant *, 32> PCs;
IRBuilder<> IRB(&*F.getEntryBlock().getFirstInsertionPt());
for (size_t i = 0; i < N; i++) {
if (&F.getEntryBlock() == AllBlocks[i]) {
PCs.push_back((Constant *)IRB.CreatePointerCast(&F, IntptrPtrTy));
PCs.push_back((Constant *)IRB.CreateIntToPtr(
ConstantInt::get(IntptrTy, 1), IntptrPtrTy));
} else {
PCs.push_back((Constant *)IRB.CreatePointerCast(
BlockAddress::get(AllBlocks[i]), IntptrPtrTy));
PCs.push_back((Constant *)IRB.CreateIntToPtr(
ConstantInt::get(IntptrTy, 0), IntptrPtrTy));
}
}
auto *PCArray = CreateFunctionLocalArrayInSection(N * 2, F, IntptrPtrTy,
SanCovPCsSectionName);
PCArray->setInitializer(
ConstantArray::get(ArrayType::get(IntptrPtrTy, N * 2), PCs));
PCArray->setConstant(true);
return PCArray;
}
void ModuleSanitizerCoverageLTO::CreateFunctionLocalArrays(
Function &F, ArrayRef<BasicBlock *> AllBlocks) {
if (Options.TracePCGuard)
FunctionGuardArray = CreateFunctionLocalArrayInSection(
AllBlocks.size(), F, Int32Ty, SanCovGuardsSectionName);
if (Options.Inline8bitCounters)
Function8bitCounterArray = CreateFunctionLocalArrayInSection(
AllBlocks.size(), F, Int8Ty, SanCovCountersSectionName);
if (Options.InlineBoolFlag)
FunctionBoolArray = CreateFunctionLocalArrayInSection(
AllBlocks.size(), F, Int1Ty, SanCovBoolFlagSectionName);
if (Options.PCTable) FunctionPCsArray = CreatePCArray(F, AllBlocks);
}
bool ModuleSanitizerCoverageLTO::InjectCoverage(
Function &F, ArrayRef<BasicBlock *> AllBlocks, bool IsLeafFunc) {
if (AllBlocks.empty()) return false;
CreateFunctionLocalArrays(F, AllBlocks);
for (size_t i = 0, N = AllBlocks.size(); i < N; i++) {
// afl++ START
if (BlockList.size()) {
int skip = 0;
for (uint32_t k = 0; k < BlockList.size(); k++) {
if (AllBlocks[i] == BlockList[k]) {
if (debug)
fprintf(stderr,
"DEBUG: Function %s skipping BB with/after __afl_loop\n",
F.getName().str().c_str());
skip = 1;
}
}
if (skip) continue;
}
// afl++ END
InjectCoverageAtBlock(F, *AllBlocks[i], i, IsLeafFunc);
}
return true;
}
// On every indirect call we call a run-time function
// __sanitizer_cov_indir_call* with two parameters:
// - callee address,
// - global cache array that contains CacheSize pointers (zero-initialized).
// The cache is used to speed up recording the caller-callee pairs.
// The address of the caller is passed implicitly via caller PC.
// CacheSize is encoded in the name of the run-time function.
void ModuleSanitizerCoverageLTO::InjectCoverageForIndirectCalls(
Function &F, ArrayRef<Instruction *> IndirCalls) {
if (IndirCalls.empty()) return;
assert(Options.TracePC || Options.TracePCGuard ||
Options.Inline8bitCounters || Options.InlineBoolFlag);
for (auto I : IndirCalls) {
IRBuilder<> IRB(I);
CallBase & CB = cast<CallBase>(*I);
Value * Callee = CB.getCalledOperand();
if (isa<InlineAsm>(Callee)) continue;
IRB.CreateCall(SanCovTracePCIndir, IRB.CreatePointerCast(Callee, IntptrTy));
}
}
void ModuleSanitizerCoverageLTO::InjectCoverageAtBlock(Function & F,
BasicBlock &BB,
size_t Idx,
bool IsLeafFunc) {
BasicBlock::iterator IP = BB.getFirstInsertionPt();
bool IsEntryBB = &BB == &F.getEntryBlock();
if (IsEntryBB) {
// Keep static allocas and llvm.localescape calls in the entry block. Even
// if we aren't splitting the block, it's nice for allocas to be before
// calls.
IP = PrepareToSplitEntryBlock(BB, IP);
}
IRBuilder<> IRB(&*IP);
if (Options.TracePC) {
IRB.CreateCall(SanCovTracePC)
#if LLVM_VERSION_MAJOR >= 12
->setCannotMerge(); // gets the PC using GET_CALLER_PC.
#else
->cannotMerge(); // gets the PC using GET_CALLER_PC.
#endif
}
if (Options.TracePCGuard) {
// afl++ START
++afl_global_id;
if (dFile.is_open()) {
unsigned long long int moduleID =
(((unsigned long long int)(rand() & 0xffffffff)) << 32) | getpid();
dFile << "ModuleID=" << moduleID << " Function=" << F.getName().str()
<< " edgeID=" << afl_global_id << "\n";
}
/* Set the ID of the inserted basic block */
ConstantInt *CurLoc = ConstantInt::get(Int32Tyi, afl_global_id);
/* Load SHM pointer */
Value *MapPtrIdx;
if (map_addr) {
MapPtrIdx = IRB.CreateGEP(Int8Ty, MapPtrFixed, CurLoc);
} else {
LoadInst *MapPtr = IRB.CreateLoad(PointerType::get(Int8Ty, 0), AFLMapPtr);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(MapPtr);
MapPtrIdx = IRB.CreateGEP(Int8Ty, MapPtr, CurLoc);
}
/* Update bitmap */
if (use_threadsafe_counters) { /* Atomic */
IRB.CreateAtomicRMW(llvm::AtomicRMWInst::BinOp::Add, MapPtrIdx, One,
#if LLVM_VERSION_MAJOR >= 13
llvm::MaybeAlign(1),
#endif
llvm::AtomicOrdering::Monotonic);
} else {
LoadInst *Counter = IRB.CreateLoad(IRB.getInt8Ty(), MapPtrIdx);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(Counter);
Value *Incr = IRB.CreateAdd(Counter, One);
if (skip_nozero == NULL) {
auto cf = IRB.CreateICmpEQ(Incr, Zero);
auto carry = IRB.CreateZExt(cf, Int8Tyi);
Incr = IRB.CreateAdd(Incr, carry);
}
auto nosan = IRB.CreateStore(Incr, MapPtrIdx);
ModuleSanitizerCoverageLTO::SetNoSanitizeMetadata(nosan);
}
// done :)
inst++;
// afl++ END
/*
XXXXXXXXXXXXXXXXXXX
auto GuardPtr = IRB.CreateIntToPtr(
IRB.CreateAdd(IRB.CreatePointerCast(FunctionGuardArray, IntptrTy),
ConstantInt::get(IntptrTy, Idx * 4)),
Int32PtrTy);
IRB.CreateCall(SanCovTracePCGuard, GuardPtr)->setCannotMerge();
*/
}
if (Options.Inline8bitCounters) {
auto CounterPtr = IRB.CreateGEP(
Function8bitCounterArray->getValueType(), Function8bitCounterArray,
{ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)});
auto Load = IRB.CreateLoad(Int8Ty, CounterPtr);
auto Inc = IRB.CreateAdd(Load, ConstantInt::get(Int8Ty, 1));
auto Store = IRB.CreateStore(Inc, CounterPtr);
SetNoSanitizeMetadata(Load);
SetNoSanitizeMetadata(Store);
}
if (Options.InlineBoolFlag) {
auto FlagPtr = IRB.CreateGEP(
FunctionBoolArray->getValueType(), FunctionBoolArray,
{ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)});
auto Load = IRB.CreateLoad(Int1Ty, FlagPtr);
auto ThenTerm =
SplitBlockAndInsertIfThen(IRB.CreateIsNull(Load), &*IP, false);
IRBuilder<> ThenIRB(ThenTerm);
auto Store = ThenIRB.CreateStore(ConstantInt::getTrue(Int1Ty), FlagPtr);
SetNoSanitizeMetadata(Load);
SetNoSanitizeMetadata(Store);
}
}
std::string ModuleSanitizerCoverageLTO::getSectionName(
const std::string &Section) const {
if (TargetTriple.isOSBinFormatCOFF()) {
if (Section == SanCovCountersSectionName) return ".SCOV$CM";
if (Section == SanCovBoolFlagSectionName) return ".SCOV$BM";
if (Section == SanCovPCsSectionName) return ".SCOVP$M";
return ".SCOV$GM"; // For SanCovGuardsSectionName.
}
if (TargetTriple.isOSBinFormatMachO()) return "__DATA,__" + Section;
return "__" + Section;
}
char ModuleSanitizerCoverageLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(ModuleSanitizerCoverageLegacyPass, "sancov",
"Pass for instrumenting coverage on functions", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(ModuleSanitizerCoverageLegacyPass, "sancov",
"Pass for instrumenting coverage on functions", false,
false)
ModulePass *llvm::createModuleSanitizerCoverageLegacyPassPass(
const SanitizerCoverageOptions &Options,
const std::vector<std::string> &AllowlistFiles,
const std::vector<std::string> &BlocklistFiles) {
return new ModuleSanitizerCoverageLegacyPass(Options);
}
static void registerLTOPass(const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
auto p = new ModuleSanitizerCoverageLegacyPass();
PM.add(p);
}
static RegisterStandardPasses RegisterCompTransPass(
PassManagerBuilder::EP_OptimizerLast, registerLTOPass);
static RegisterStandardPasses RegisterCompTransPass0(
PassManagerBuilder::EP_EnabledOnOptLevel0, registerLTOPass);
#if LLVM_VERSION_MAJOR >= 11
static RegisterStandardPasses RegisterCompTransPassLTO(
PassManagerBuilder::EP_FullLinkTimeOptimizationLast, registerLTOPass);
#endif