| /* |
| * xxHash - Extremely Fast Hash algorithm |
| * Header File |
| * Copyright (C) 2012-2020 Yann Collet |
| * |
| * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You can contact the author at: |
| * - xxHash homepage: https://www.xxhash.com |
| * - xxHash source repository: https://github.com/Cyan4973/xxHash |
| */ |
| |
| /* TODO: update */ |
| /* Notice extracted from xxHash homepage: |
| |
| xxHash is an extremely fast hash algorithm, running at RAM speed limits. |
| It also successfully passes all tests from the SMHasher suite. |
| |
| Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo |
| @3GHz) |
| |
| Name Speed Q.Score Author |
| xxHash 5.4 GB/s 10 |
| CrapWow 3.2 GB/s 2 Andrew |
| MumurHash 3a 2.7 GB/s 10 Austin Appleby |
| SpookyHash 2.0 GB/s 10 Bob Jenkins |
| SBox 1.4 GB/s 9 Bret Mulvey |
| Lookup3 1.2 GB/s 9 Bob Jenkins |
| SuperFastHash 1.2 GB/s 1 Paul Hsieh |
| CityHash64 1.05 GB/s 10 Pike & Alakuijala |
| FNV 0.55 GB/s 5 Fowler, Noll, Vo |
| CRC32 0.43 GB/s 9 |
| MD5-32 0.33 GB/s 10 Ronald L. Rivest |
| SHA1-32 0.28 GB/s 10 |
| |
| Q.Score is a measure of quality of the hash function. |
| It depends on successfully passing SMHasher test set. |
| 10 is a perfect score. |
| |
| Note: SMHasher's CRC32 implementation is not the fastest one. |
| Other speed-oriented implementations can be faster, |
| especially in combination with PCLMUL instruction: |
| https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735 |
| |
| A 64-bit version, named XXH64, is available since r35. |
| It offers much better speed, but for 64-bit applications only. |
| Name Speed on 64 bits Speed on 32 bits |
| XXH64 13.8 GB/s 1.9 GB/s |
| XXH32 6.8 GB/s 6.0 GB/s |
| */ |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| |
| #endif |
| |
| /* **************************** |
| * INLINE mode |
| ******************************/ |
| /*! |
| * XXH_INLINE_ALL (and XXH_PRIVATE_API) |
| * Use these build macros to inline xxhash into the target unit. |
| * Inlining improves performance on small inputs, especially when the length is |
| * expressed as a compile-time constant: |
| * |
| * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
| * |
| * It also keeps xxHash symbols private to the unit, so they are not exported. |
| * |
| * Usage: |
| * #define XXH_INLINE_ALL |
| * #include "xxhash.h" |
| * |
| * Do not compile and link xxhash.o as a separate object, as it is not useful. |
| */ |
| #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) && \ |
| !defined(XXH_INLINE_ALL_31684351384) |
| /* this section should be traversed only once */ |
| #define XXH_INLINE_ALL_31684351384 |
| /* give access to the advanced API, required to compile implementations */ |
| #undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
| #define XXH_STATIC_LINKING_ONLY |
| /* make all functions private */ |
| #undef XXH_PUBLIC_API |
| #if defined(__GNUC__) |
| #define XXH_PUBLIC_API static __inline __attribute__((unused)) |
| #elif defined(__cplusplus) || \ |
| (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| #define XXH_PUBLIC_API static inline |
| #elif defined(_MSC_VER) |
| #define XXH_PUBLIC_API static __inline |
| #else |
| /* note: this version may generate warnings for unused static functions */ |
| #define XXH_PUBLIC_API static |
| #endif |
| |
| /* |
| * This part deals with the special case where a unit wants to inline xxHash, |
| * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such |
| * as part of some previously included *.h header file. |
| * Without further action, the new include would just be ignored, |
| * and functions would effectively _not_ be inlined (silent failure). |
| * The following macros solve this situation by prefixing all inlined names, |
| * avoiding naming collision with previous inclusions. |
| */ |
| #ifdef XXH_NAMESPACE |
| #error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported" |
| /* |
| * Note: Alternative: #undef all symbols (it's a pretty large list). |
| * Without #error: it compiles, but functions are actually not inlined. |
| */ |
| #endif |
| #define XXH_NAMESPACE XXH_INLINE_ |
| /* |
| * Some identifiers (enums, type names) are not symbols, but they must |
| * still be renamed to avoid redeclaration. |
| * Alternative solution: do not redeclare them. |
| * However, this requires some #ifdefs, and is a more dispersed action. |
| * Meanwhile, renaming can be achieved in a single block |
| */ |
| #define XXH_IPREF(Id) XXH_INLINE_##Id |
| #define XXH_OK XXH_IPREF(XXH_OK) |
| #define XXH_ERROR XXH_IPREF(XXH_ERROR) |
| #define XXH_errorcode XXH_IPREF(XXH_errorcode) |
| #define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
| #define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
| #define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
| #define XXH32_state_s XXH_IPREF(XXH32_state_s) |
| #define XXH32_state_t XXH_IPREF(XXH32_state_t) |
| #define XXH64_state_s XXH_IPREF(XXH64_state_s) |
| #define XXH64_state_t XXH_IPREF(XXH64_state_t) |
| #define XXH3_state_s XXH_IPREF(XXH3_state_s) |
| #define XXH3_state_t XXH_IPREF(XXH3_state_t) |
| #define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
| /* Ensure the header is parsed again, even if it was previously included */ |
| #undef XXHASH_H_5627135585666179 |
| #undef XXHASH_H_STATIC_13879238742 |
| #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
| |
| /* **************************************************************** |
| * Stable API |
| *****************************************************************/ |
| #ifndef XXHASH_H_5627135585666179 |
| #define XXHASH_H_5627135585666179 1 |
| |
| /* specific declaration modes for Windows */ |
| #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
| #if defined(WIN32) && defined(_MSC_VER) && \ |
| (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
| #ifdef XXH_EXPORT |
| #define XXH_PUBLIC_API __declspec(dllexport) |
| #elif XXH_IMPORT |
| #define XXH_PUBLIC_API __declspec(dllimport) |
| #endif |
| #else |
| #define XXH_PUBLIC_API /* do nothing */ |
| #endif |
| #endif |
| |
| /*! |
| * XXH_NAMESPACE, aka Namespace Emulation: |
| * |
| * If you want to include _and expose_ xxHash functions from within your own |
| * library, but also want to avoid symbol collisions with other libraries |
| * which may also include xxHash, you can use XXH_NAMESPACE to automatically |
| * prefix any public symbol from xxhash library with the value of |
| * XXH_NAMESPACE (therefore, avoid empty or numeric values). |
| * |
| * Note that no change is required within the calling program as long as it |
| * includes `xxhash.h`: Regular symbol names will be automatically translated |
| * by this header. |
| */ |
| #ifdef XXH_NAMESPACE |
| #define XXH_CAT(A, B) A##B |
| #define XXH_NAME2(A, B) XXH_CAT(A, B) |
| #define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
| #define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
| #define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
| #define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
| #define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
| #define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
| #define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
| #define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
| #define XXH32_canonicalFromHash \ |
| XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
| #define XXH32_hashFromCanonical \ |
| XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
| #define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
| #define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
| #define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
| #define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
| #define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
| #define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
| #define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
| #define XXH64_canonicalFromHash \ |
| XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
| #define XXH64_hashFromCanonical \ |
| XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
| #endif |
| |
| /* ************************************* |
| * Version |
| ***************************************/ |
| #define XXH_VERSION_MAJOR 0 |
| #define XXH_VERSION_MINOR 7 |
| #define XXH_VERSION_RELEASE 4 |
| #define XXH_VERSION_NUMBER \ |
| (XXH_VERSION_MAJOR * 100 * 100 + XXH_VERSION_MINOR * 100 + \ |
| XXH_VERSION_RELEASE) |
| XXH_PUBLIC_API unsigned XXH_versionNumber(void); |
| |
| /* **************************** |
| * Definitions |
| ******************************/ |
| #include <stddef.h> /* size_t */ |
| typedef enum { XXH_OK = 0, XXH_ERROR } XXH_errorcode; |
| |
| /*-********************************************************************** |
| * 32-bit hash |
| ************************************************************************/ |
| #if !defined(__VMS) && \ |
| (defined(__cplusplus) || \ |
| (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)) |
| #include <stdint.h> |
| typedef uint32_t XXH32_hash_t; |
| #else |
| #include <limits.h> |
| #if UINT_MAX == 0xFFFFFFFFUL |
| typedef unsigned int XXH32_hash_t; |
| #else |
| #if ULONG_MAX == 0xFFFFFFFFUL |
| typedef unsigned long XXH32_hash_t; |
| #else |
| #error "unsupported platform: need a 32-bit type" |
| #endif |
| #endif |
| #endif |
| |
| /*! |
| * XXH32(): |
| * Calculate the 32-bit hash of sequence "length" bytes stored at memory |
| * address "input". The memory between input & input+length must be valid |
| * (allocated and read-accessible). "seed" can be used to alter the result |
| * predictably. Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher |
| * benchmark): 5.4 GB/s |
| * |
| * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
| * and offers true 64/128 bit hash results. It provides a superior level of |
| * dispersion, and greatly reduces the risks of collisions. |
| */ |
| XXH_PUBLIC_API XXH32_hash_t XXH32(const void *input, size_t length, |
| XXH32_hash_t seed); |
| |
| /******* Streaming *******/ |
| |
| /* |
| * Streaming functions generate the xxHash value from an incrememtal input. |
| * This method is slower than single-call functions, due to state management. |
| * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
| * |
| * An XXH state must first be allocated using `XXH*_createState()`. |
| * |
| * Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
| * |
| * Then, feed the hash state by calling `XXH*_update()` as many times as |
| * necessary. |
| * |
| * The function returns an error code, with 0 meaning OK, and any other value |
| * meaning there is an error. |
| * |
| * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
| * This function returns the nn-bits hash as an int or long long. |
| * |
| * It's still possible to continue inserting input into the hash state after a |
| * digest, and generate new hash values later on by invoking `XXH*_digest()`. |
| * |
| * When done, release the state using `XXH*_freeState()`. |
| */ |
| |
| typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */ |
| XXH_PUBLIC_API XXH32_state_t *XXH32_createState(void); |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr); |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t * dst_state, |
| const XXH32_state_t *src_state); |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t *statePtr, |
| XXH32_hash_t seed); |
| XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t *statePtr, |
| const void *input, size_t length); |
| XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t *statePtr); |
| |
| /******* Canonical representation *******/ |
| |
| /* |
| * The default return values from XXH functions are unsigned 32 and 64 bit |
| * integers. |
| * This the simplest and fastest format for further post-processing. |
| * |
| * However, this leaves open the question of what is the order on the byte |
| * level, since little and big endian conventions will store the same number |
| * differently. |
| * |
| * The canonical representation settles this issue by mandating big-endian |
| * convention, the same convention as human-readable numbers (large digits |
| * first). |
| * |
| * When writing hash values to storage, sending them over a network, or printing |
| * them, it's highly recommended to use the canonical representation to ensure |
| * portability across a wider range of systems, present and future. |
| * |
| * The following functions allow transformation of hash values to and from |
| * canonical format. |
| */ |
| |
| typedef struct { |
| |
| unsigned char digest[4]; |
| |
| } XXH32_canonical_t; |
| |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t *dst, |
| XXH32_hash_t hash); |
| XXH_PUBLIC_API XXH32_hash_t |
| XXH32_hashFromCanonical(const XXH32_canonical_t *src); |
| |
| #ifndef XXH_NO_LONG_LONG |
| /*-********************************************************************** |
| * 64-bit hash |
| ************************************************************************/ |
| #if !defined(__VMS) && \ |
| (defined(__cplusplus) || (defined(__STDC_VERSION__) && \ |
| (__STDC_VERSION__ >= 199901L) /* C99 */)) |
| #include <stdint.h> |
| typedef uint64_t XXH64_hash_t; |
| #else |
| /* the following type must have a width of 64-bit */ |
| typedef unsigned long long XXH64_hash_t; |
| #endif |
| |
| /*! |
| * XXH64(): |
| * Returns the 64-bit hash of sequence of length @length stored at memory |
| * address @input. |
| * @seed can be used to alter the result predictably. |
| * |
| * This function usually runs faster on 64-bit systems, but slower on 32-bit |
| * systems (see benchmark). |
| * |
| * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
| * and offers true 64/128 bit hash results. It provides a superior level of |
| * dispersion, and greatly reduces the risks of collisions. |
| */ |
| XXH_PUBLIC_API XXH64_hash_t XXH64(const void *input, size_t length, |
| XXH64_hash_t seed); |
| |
| /******* Streaming *******/ |
| typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
| XXH_PUBLIC_API XXH64_state_t *XXH64_createState(void); |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr); |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t * dst_state, |
| const XXH64_state_t *src_state); |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t *statePtr, |
| XXH64_hash_t seed); |
| XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t *statePtr, |
| const void *input, size_t length); |
| XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t *statePtr); |
| |
| /******* Canonical representation *******/ |
| typedef struct { |
| |
| unsigned char digest[sizeof(XXH64_hash_t)]; |
| |
| } XXH64_canonical_t; |
| |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t *dst, |
| XXH64_hash_t hash); |
| XXH_PUBLIC_API XXH64_hash_t |
| XXH64_hashFromCanonical(const XXH64_canonical_t *src); |
| |
| #endif /* XXH_NO_LONG_LONG */ |
| |
| #endif /* XXHASH_H_5627135585666179 */ |
| |
| #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
| #define XXHASH_H_STATIC_13879238742 |
| /* **************************************************************************** |
| * This section contains declarations which are not guaranteed to remain stable. |
| * They may change in future versions, becoming incompatible with a different |
| * version of the library. |
| * These declarations should only be used with static linking. |
| * Never use them in association with dynamic linking! |
| ***************************************************************************** |
| */ |
| |
| /* |
| * These definitions are only present to allow static allocation of an XXH |
| * state, for example, on the stack or in a struct. |
| * Never **ever** access members directly. |
| */ |
| |
| struct XXH32_state_s { |
| |
| XXH32_hash_t total_len_32; |
| XXH32_hash_t large_len; |
| XXH32_hash_t v1; |
| XXH32_hash_t v2; |
| XXH32_hash_t v3; |
| XXH32_hash_t v4; |
| XXH32_hash_t mem32[4]; |
| XXH32_hash_t memsize; |
| XXH32_hash_t |
| reserved; /* never read nor write, might be removed in a future version */ |
| |
| }; /* typedef'd to XXH32_state_t */ |
| |
| #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
| |
| struct XXH64_state_s { |
| |
| XXH64_hash_t total_len; |
| XXH64_hash_t v1; |
| XXH64_hash_t v2; |
| XXH64_hash_t v3; |
| XXH64_hash_t v4; |
| XXH64_hash_t mem64[4]; |
| XXH32_hash_t memsize; |
| XXH32_hash_t reserved32; /* required for padding anyway */ |
| XXH64_hash_t reserved64; /* never read nor write, might be removed in a future |
| version */ |
| |
| }; /* typedef'd to XXH64_state_t */ |
| |
| /*-********************************************************************** |
| * XXH3 |
| * New experimental hash |
| ************************************************************************/ |
| |
| /* ************************************************************************ |
| * XXH3 is a new hash algorithm featuring: |
| * - Improved speed for both small and large inputs |
| * - True 64-bit and 128-bit outputs |
| * - SIMD acceleration |
| * - Improved 32-bit viability |
| * |
| * Speed analysis methodology is explained here: |
| * |
| * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
| * |
| * In general, expect XXH3 to run about ~2x faster on large inputs and >3x |
| * faster on small ones compared to XXH64, though exact differences depend on |
| * the platform. |
| * |
| * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash |
| * on all platforms. |
| * |
| * It benefits greatly from SIMD and 64-bit arithmetic, but does not require |
| * it. |
| * |
| * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run |
| * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are |
| * explained in the implementation. |
| * |
| * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, |
| * POWER8, ZVector and scalar targets. This can be controlled with the |
| * XXH_VECTOR macro. |
| * |
| * XXH3 offers 2 variants, _64bits and _128bits. |
| * When only 64 bits are needed, prefer calling the _64bits variant, as it |
| * reduces the amount of mixing, resulting in faster speed on small inputs. |
| * |
| * It's also generally simpler to manipulate a scalar return type than a |
| * struct. |
| * |
| * The 128-bit version adds additional strength, but it is slightly slower. |
| * |
| * The XXH3 algorithm is still in development. |
| * The results it produces may still change in future versions. |
| * |
| * Results produced by v0.7.x are not comparable with results from v0.7.y. |
| * However, the API is completely stable, and it can safely be used for |
| * ephemeral data (local sessions). |
| * |
| * Avoid storing values in long-term storage until the algorithm is finalized. |
| * |
| * Since v0.7.3, XXH3 has reached "release candidate" status, meaning that, if |
| * everything remains fine, its current format will be "frozen" and become the |
| * final one. |
| * |
| * After which, return values of XXH3 and XXH128 will no longer change in |
| * future versions. |
| * |
| * XXH3's return values will be officially finalized upon reaching v0.8.0. |
| * |
| * The API supports one-shot hashing, streaming mode, and custom secrets. |
| */ |
| |
| #ifdef XXH_NAMESPACE |
| #define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
| #define XXH3_64bits_withSecret \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
| #define XXH3_64bits_withSeed \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
| |
| #define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
| #define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
| #define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
| |
| #define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
| #define XXH3_64bits_reset_withSeed \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
| #define XXH3_64bits_reset_withSecret \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
| #define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
| #define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
| |
| #define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
| #endif |
| |
| /* XXH3_64bits(): |
| * default 64-bit variant, using default secret and default seed of 0. |
| * It's the fastest variant. */ |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void *data, size_t len); |
| |
| /* |
| * XXH3_64bits_withSeed(): |
| * This variant generates a custom secret on the fly based on the default |
| * secret, altered using the `seed` value. |
| * While this operation is decently fast, note that it's not completely free. |
| * Note: seed==0 produces the same results as XXH3_64bits(). |
| */ |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void *data, size_t len, |
| XXH64_hash_t seed); |
| |
| /* |
| * XXH3_64bits_withSecret(): |
| * It's possible to provide any blob of bytes as a "secret" to generate the |
| * hash. This makes it more difficult for an external actor to prepare an |
| * intentional collision. secretSize *must* be large enough (>= |
| * XXH3_SECRET_SIZE_MIN). The hash quality depends on the secret's high |
| * entropy, meaning that the secret should look like a bunch of random |
| * bytes. Avoid "trivial" sequences such as text or a bunch of repeated |
| * characters. If you are unsure of the "randonmess" of the blob of bytes, |
| * consider making it a "custom seed" instead, |
| * and use "XXH_generateSecret()" to generate a high quality secret. |
| */ |
| #define XXH3_SECRET_SIZE_MIN 136 |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void *data, size_t len, |
| const void *secret, |
| size_t secretSize); |
| |
| /* streaming 64-bit */ |
| |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */ |
| #include <stdalign.h> |
| #define XXH_ALIGN(n) alignas(n) |
| #elif defined(__GNUC__) |
| #define XXH_ALIGN(n) __attribute__((aligned(n))) |
| #elif defined(_MSC_VER) |
| #define XXH_ALIGN(n) __declspec(align(n)) |
| #else |
| #define XXH_ALIGN(n) /* disabled */ |
| #endif |
| |
| /* Old GCC versions only accept the attribute after the type in structures. |
| */ |
| #if !(defined(__STDC_VERSION__) && \ |
| (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
| && defined(__GNUC__) |
| #define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
| #else |
| #define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
| #endif |
| |
| typedef struct XXH3_state_s XXH3_state_t; |
| |
| #define XXH3_INTERNALBUFFER_SIZE 256 |
| #define XXH3_SECRET_DEFAULT_SIZE 192 |
| struct XXH3_state_s { |
| |
| XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
| /* used to store a custom secret generated from a seed */ |
| XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
| XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
| XXH32_hash_t bufferedSize; |
| XXH32_hash_t reserved32; |
| size_t nbStripesPerBlock; |
| size_t nbStripesSoFar; |
| size_t secretLimit; |
| XXH64_hash_t totalLen; |
| XXH64_hash_t seed; |
| XXH64_hash_t reserved64; |
| const unsigned char *extSecret; /* reference to external secret; |
| * if == NULL, use .customSecret instead */ |
| /* note: there may be some padding at the end due to alignment on 64 bytes */ |
| |
| }; /* typedef'd to XXH3_state_t */ |
| |
| #undef XXH_ALIGN_MEMBER |
| |
| /* |
| * Streaming requires state maintenance. |
| * This operation costs memory and CPU. |
| * As a consequence, streaming is slower than one-shot hashing. |
| * For better performance, prefer one-shot functions whenever possible. |
| */ |
| XXH_PUBLIC_API XXH3_state_t *XXH3_createState(void); |
| XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t *statePtr); |
| XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t * dst_state, |
| const XXH3_state_t *src_state); |
| |
| /* |
| * XXH3_64bits_reset(): |
| * Initialize with the default parameters. |
| * The result will be equivalent to `XXH3_64bits()`. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t *statePtr); |
| /* |
| * XXH3_64bits_reset_withSeed(): |
| * Generate a custom secret from `seed`, and store it into `statePtr`. |
| * digest will be equivalent to `XXH3_64bits_withSeed()`. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t *statePtr, |
| XXH64_hash_t seed); |
| /* |
| * XXH3_64bits_reset_withSecret(): |
| * `secret` is referenced, and must outlive the hash streaming session, so |
| * be careful when using stack arrays. |
| * `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`. |
| */ |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret( |
| XXH3_state_t *statePtr, const void *secret, size_t secretSize); |
| |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t *statePtr, |
| const void * input, |
| size_t length); |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t *statePtr); |
| |
| /* 128-bit */ |
| |
| #ifdef XXH_NAMESPACE |
| #define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
| #define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
| #define XXH3_128bits_withSeed \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
| #define XXH3_128bits_withSecret \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
| |
| #define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
| #define XXH3_128bits_reset_withSeed \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
| #define XXH3_128bits_reset_withSecret \ |
| XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
| #define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
| #define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
| |
| #define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
| #define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
| #define XXH128_canonicalFromHash \ |
| XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
| #define XXH128_hashFromCanonical \ |
| XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
| #endif |
| |
| typedef struct { |
| |
| XXH64_hash_t low64; |
| XXH64_hash_t high64; |
| |
| } XXH128_hash_t; |
| |
| XXH_PUBLIC_API XXH128_hash_t XXH128(const void *data, size_t len, |
| XXH64_hash_t seed); |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void *data, size_t len); |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed( |
| const void *data, size_t len, XXH64_hash_t seed); /* == XXH128() */ |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void *data, |
| size_t len, |
| const void *secret, |
| size_t secretSize); |
| |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t *statePtr); |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t *statePtr, |
| XXH64_hash_t seed); |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret( |
| XXH3_state_t *statePtr, const void *secret, size_t secretSize); |
| |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t *statePtr, |
| const void * input, |
| size_t length); |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t *statePtr); |
| |
| /* Note: For better performance, these functions can be inlined using |
| * XXH_INLINE_ALL */ |
| |
| /*! |
| * XXH128_isEqual(): |
| * Return: 1 if `h1` and `h2` are equal, 0 if they are not. |
| */ |
| XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
| |
| /*! |
| * XXH128_cmp(): |
| * |
| * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
| * |
| * return: >0 if *h128_1 > *h128_2 |
| * =0 if *h128_1 == *h128_2 |
| * <0 if *h128_1 < *h128_2 |
| */ |
| XXH_PUBLIC_API int XXH128_cmp(const void *h128_1, const void *h128_2); |
| |
| /******* Canonical representation *******/ |
| typedef struct { |
| |
| unsigned char digest[sizeof(XXH128_hash_t)]; |
| |
| } XXH128_canonical_t; |
| |
| XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t *dst, |
| XXH128_hash_t hash); |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH128_hashFromCanonical(const XXH128_canonical_t *src); |
| |
| /* === Experimental API === */ |
| /* Symbols defined below must be considered tied to a specific library version. |
| */ |
| |
| /* |
| * XXH3_generateSecret(): |
| * |
| * Derive a secret for use with `*_withSecret()` prototypes of XXH3. |
| * Use this if you need a higher level of security than the one provided by |
| * 64bit seed. |
| * |
| * Take as input a custom seed of any length and any content, |
| * generate from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE |
| * into already allocated buffer secretBuffer. |
| * The generated secret ALWAYS is XXH_SECRET_DEFAULT_SIZE bytes long. |
| * |
| * The generated secret can then be used with any `*_withSecret()` variant. |
| * The functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`, |
| * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()` |
| * are part of this list. They all accept a `secret` parameter |
| * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN) |
| * _and_ feature very high entropy (consist of random-looking bytes). |
| * These conditions can be a high bar to meet, so |
| * this function can be used to generate a secret of proper quality. |
| * |
| * customSeed can be anything. It can have any size, even small ones, |
| * and its content can be anything, even some "low entropy" source such as a |
| * bunch of zeroes. The resulting `secret` will nonetheless respect all expected |
| * qualities. |
| * |
| * Supplying NULL as the customSeed copies the default secret into |
| * `secretBuffer`. When customSeedSize > 0, supplying NULL as customSeed is |
| * undefined behavior. |
| */ |
| XXH_PUBLIC_API void XXH3_generateSecret(void * secretBuffer, |
| const void *customSeed, |
| size_t customSeedSize); |
| |
| #endif /* XXH_NO_LONG_LONG */ |
| |
| #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
| #define XXH_IMPLEMENTATION |
| #endif |
| |
| #endif /* defined(XXH_STATIC_LINKING_ONLY) && \ |
| !defined(XXHASH_H_STATIC_13879238742) */ |
| |
| /* ======================================================================== */ |
| /* ======================================================================== */ |
| /* ======================================================================== */ |
| |
| /*-********************************************************************** |
| * xxHash implementation |
| *-********************************************************************** |
| * xxHash's implementation used to be found in xxhash.c. |
| * |
| * However, code inlining requires the implementation to be visible to the |
| * compiler, usually within the header. |
| * |
| * As a workaround, xxhash.c used to be included within xxhash.h. This caused |
| * some issues with some build systems, especially ones which treat .c files |
| * as source files. |
| * |
| * Therefore, the implementation is now directly integrated within xxhash.h. |
| * Another small advantage is that xxhash.c is no longer needed in /include. |
| ************************************************************************/ |
| |
| #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) || \ |
| defined(XXH_IMPLEMENTATION)) && \ |
| !defined(XXH_IMPLEM_13a8737387) |
| #define XXH_IMPLEM_13a8737387 |
| |
| /* ************************************* |
| * Tuning parameters |
| ***************************************/ |
| /*! |
| * XXH_FORCE_MEMORY_ACCESS: |
| * By default, access to unaligned memory is controlled by `memcpy()`, which |
| * is safe and portable. |
| * |
| * Unfortunately, on some target/compiler combinations, the generated assembly |
| * is sub-optimal. |
| * |
| * The below switch allow to select a different access method for improved |
| * performance. |
| * Method 0 (default): |
| * Use `memcpy()`. Safe and portable. |
| * Method 1: |
| * `__attribute__((packed))` statement. It depends on compiler extensions |
| * and is therefore not portable. |
| * This method is safe if your compiler supports it, and *generally* as |
| * fast or faster than `memcpy`. |
| * Method 2: |
| * Direct access via cast. This method doesn't depend on the compiler but |
| * violates the C standard. |
| * It can generate buggy code on targets which do not support unaligned |
| * memory accesses. |
| * But in some circumstances, it's the only known way to get the most |
| * performance (ie GCC + ARMv6) |
| * Method 3: |
| * Byteshift. This can generate the best code on old compilers which don't |
| * inline small `memcpy()` calls, and it might also be faster on |
| * big-endian systems which lack a native byteswap instruction. See |
| * https://stackoverflow.com/a/32095106/646947 for details. Prefer these |
| * methods in priority order (0 > 1 > 2 > 3) |
| */ |
| #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command \ |
| line for example */ |
| #if !defined(__clang__) && defined(__GNUC__) && \ |
| defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && \ |
| (__ARM_ARCH == 6) |
| #define XXH_FORCE_MEMORY_ACCESS 2 |
| #elif !defined(__clang__) && \ |
| ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
| (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7))) |
| #define XXH_FORCE_MEMORY_ACCESS 1 |
| #endif |
| #endif |
| |
| /*! |
| * XXH_ACCEPT_NULL_INPUT_POINTER: |
| * If the input pointer is NULL, xxHash's default behavior is to dereference |
| * it, triggering a segfault. When this macro is enabled, xxHash actively |
| * checks the input for a null pointer. If it is, the result for null input |
| * pointers is the same as a zero-length input. |
| */ |
| #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ |
| #define XXH_ACCEPT_NULL_INPUT_POINTER 0 |
| #endif |
| |
| /*! |
| * XXH_FORCE_ALIGN_CHECK: |
| * This is an important performance trick |
| * for architectures without decent unaligned memory access performance. |
| * It checks for input alignment, and when conditions are met, |
| * uses a "fast path" employing direct 32-bit/64-bit read, |
| * resulting in _dramatically faster_ read speed. |
| * |
| * The check costs one initial branch per hash, which is generally negligible, |
| * but not zero. Moreover, it's not useful to generate binary for an |
| * additional code path if memory access uses same instruction for both |
| * aligned and unaligned adresses. |
| * |
| * In these cases, the alignment check can be removed by setting this macro to |
| * 0. Then the code will always use unaligned memory access. Align check is |
| * automatically disabled on x86, x64 & arm64, which are platforms known to |
| * offer good unaligned memory accesses performance. |
| * |
| * This option does not affect XXH3 (only XXH32 and XXH64). |
| */ |
| #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
| #if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || \ |
| defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */ |
| #define XXH_FORCE_ALIGN_CHECK 0 |
| #else |
| #define XXH_FORCE_ALIGN_CHECK 1 |
| #endif |
| #endif |
| |
| /*! |
| * XXH_NO_INLINE_HINTS: |
| * |
| * By default, xxHash tries to force the compiler to inline almost all |
| * internal functions. |
| * |
| * This can usually improve performance due to reduced jumping and improved |
| * constant folding, but significantly increases the size of the binary which |
| * might not be favorable. |
| * |
| * Additionally, sometimes the forced inlining can be detrimental to |
| * performance, depending on the architecture. |
| * |
| * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
| * compiler full control on whether to inline or not. |
| * |
| * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using |
| * -fno-inline with GCC or Clang, this will automatically be defined. |
| */ |
| #ifndef XXH_NO_INLINE_HINTS |
| #if defined(__OPTIMIZE_SIZE__) || defined(__NO_INLINE__) |
| #define XXH_NO_INLINE_HINTS 1 |
| #else |
| #define XXH_NO_INLINE_HINTS 0 |
| #endif |
| #endif |
| |
| /*! |
| * XXH_REROLL: |
| * Whether to reroll XXH32_finalize, and XXH64_finalize, |
| * instead of using an unrolled jump table/if statement loop. |
| * |
| * This is automatically defined on -Os/-Oz on GCC and Clang. |
| */ |
| #ifndef XXH_REROLL |
| #if defined(__OPTIMIZE_SIZE__) |
| #define XXH_REROLL 1 |
| #else |
| #define XXH_REROLL 0 |
| #endif |
| #endif |
| |
| /* ************************************* |
| * Includes & Memory related functions |
| ***************************************/ |
| /*! |
| * Modify the local functions below should you wish to use some other memory |
| * routines for malloc() and free() |
| */ |
| #include <stdlib.h> |
| |
| static void *XXH_malloc(size_t s) { |
| |
| return malloc(s); |
| |
| } |
| |
| static void XXH_free(void *p) { |
| |
| free(p); |
| |
| } |
| |
| /*! and for memcpy() */ |
| #include <string.h> |
| static void *XXH_memcpy(void *dest, const void *src, size_t size) { |
| |
| return memcpy(dest, src, size); |
| |
| } |
| |
| #include <limits.h> /* ULLONG_MAX */ |
| |
| /* ************************************* |
| * Compiler Specific Options |
| ***************************************/ |
| #ifdef _MSC_VER /* Visual Studio warning fix */ |
| #pragma warning(disable : 4127) /* disable: C4127: conditional expression \ |
| is constant */ |
| #endif |
| |
| #if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
| #if defined(__GNUC__) |
| #define XXH_FORCE_INLINE static __attribute__((unused)) |
| #else |
| #define XXH_FORCE_INLINE static |
| #endif |
| #define XXH_NO_INLINE static |
| /* enable inlining hints */ |
| #elif defined(_MSC_VER) /* Visual Studio */ |
| #define XXH_FORCE_INLINE static __forceinline |
| #define XXH_NO_INLINE static __declspec(noinline) |
| #elif defined(__GNUC__) |
| #define XXH_FORCE_INLINE \ |
| static __inline__ __attribute__((always_inline, unused)) |
| #define XXH_NO_INLINE static __attribute__((noinline)) |
| #elif defined(__cplusplus) || \ |
| (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
| #define XXH_FORCE_INLINE static inline |
| #define XXH_NO_INLINE static |
| #else |
| #define XXH_FORCE_INLINE static |
| #define XXH_NO_INLINE static |
| #endif |
| |
| /* ************************************* |
| * Debug |
| ***************************************/ |
| /* |
| * XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
| * compiler's command line options. The value must be a number. |
| */ |
| #ifndef XXH_DEBUGLEVEL |
| #ifdef DEBUGLEVEL /* backwards compat */ |
| #define XXH_DEBUGLEVEL DEBUGLEVEL |
| #else |
| #define XXH_DEBUGLEVEL 0 |
| #endif |
| #endif |
| |
| #if (XXH_DEBUGLEVEL >= 1) |
| #include <assert.h> /* note: can still be disabled with NDEBUG */ |
| #define XXH_ASSERT(c) assert(c) |
| #else |
| #define XXH_ASSERT(c) ((void)0) |
| #endif |
| |
| /* note: use after variable declarations */ |
| #define XXH_STATIC_ASSERT(c) \ |
| do { \ |
| \ |
| enum { XXH_sa = 1 / (int)(!!(c)) }; \ |
| \ |
| } while (0) |
| |
| /* ************************************* |
| * Basic Types |
| ***************************************/ |
| #if !defined(__VMS) && \ |
| (defined(__cplusplus) || \ |
| (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)) |
| #include <stdint.h> |
| typedef uint8_t xxh_u8; |
| #else |
| typedef unsigned char xxh_u8; |
| #endif |
| typedef XXH32_hash_t xxh_u32; |
| |
| #ifdef XXH_OLD_NAMES |
| #define BYTE xxh_u8 |
| #define U8 xxh_u8 |
| #define U32 xxh_u32 |
| #endif |
| |
| /* *** Memory access *** */ |
| |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) |
| /* |
| * Manual byteshift. Best for old compilers which don't inline memcpy. |
| * We actually directly use XXH_readLE32 and XXH_readBE32. |
| */ |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2)) |
| |
| /* |
| * Force direct memory access. Only works on CPU which support unaligned memory |
| * access in hardware. |
| */ |
| static xxh_u32 XXH_read32(const void *memPtr) { |
| |
| return *(const xxh_u32 *)memPtr; |
| |
| } |
| |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1)) |
| |
| /* |
| * __pack instructions are safer but compiler specific, hence potentially |
| * problematic for some compilers. |
| * |
| * Currently only defined for GCC and ICC. |
| */ |
| #ifdef XXH_OLD_NAMES |
| typedef union { |
| |
| xxh_u32 u32; |
| |
| } __attribute__((packed)) unalign; |
| |
| #endif |
| static xxh_u32 XXH_read32(const void *ptr) { |
| |
| typedef union { |
| |
| xxh_u32 u32; |
| |
| } __attribute__((packed)) xxh_unalign; |
| |
| return ((const xxh_unalign *)ptr)->u32; |
| |
| } |
| |
| #else |
| |
| /* |
| * Portable and safe solution. Generally efficient. |
| * see: https://stackoverflow.com/a/32095106/646947 |
| */ |
| static xxh_u32 XXH_read32(const void *memPtr) { |
| |
| xxh_u32 val; |
| memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| |
| } |
| |
| #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| |
| /* *** Endianess *** */ |
| typedef enum { XXH_bigEndian = 0, XXH_littleEndian = 1 } XXH_endianess; |
| |
| /*! |
| * XXH_CPU_LITTLE_ENDIAN: |
| * Defined to 1 if the target is little endian, or 0 if it is big endian. |
| * It can be defined externally, for example on the compiler command line. |
| * |
| * If it is not defined, a runtime check (which is usually constant folded) |
| * is used instead. |
| */ |
| #ifndef XXH_CPU_LITTLE_ENDIAN |
| /* |
| * Try to detect endianness automatically, to avoid the nonstandard behavior |
| * in `XXH_isLittleEndian()` |
| */ |
| #if defined(_WIN32) || defined(__LITTLE_ENDIAN__) || \ |
| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
| #define XXH_CPU_LITTLE_ENDIAN 1 |
| #elif defined(__BIG_ENDIAN__) || \ |
| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| #define XXH_CPU_LITTLE_ENDIAN 0 |
| #else |
| /* |
| * runtime test, presumed to simplify to a constant by compiler |
| */ |
| static int XXH_isLittleEndian(void) { |
| |
| /* |
| * Portable and well-defined behavior. |
| * Don't use static: it is detrimental to performance. |
| */ |
| const union { |
| |
| xxh_u32 u; |
| xxh_u8 c[4]; |
| |
| } one = {1}; |
| |
| return one.c[0]; |
| |
| } |
| |
| #define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
| #endif |
| #endif |
| |
| /* **************************************** |
| * Compiler-specific Functions and Macros |
| ******************************************/ |
| #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
| |
| #ifdef __has_builtin |
| #define XXH_HAS_BUILTIN(x) __has_builtin(x) |
| #else |
| #define XXH_HAS_BUILTIN(x) 0 |
| #endif |
| |
| #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) && \ |
| XXH_HAS_BUILTIN(__builtin_rotateleft64) |
| #define XXH_rotl32 __builtin_rotateleft32 |
| #define XXH_rotl64 __builtin_rotateleft64 |
| /* Note: although _rotl exists for minGW (GCC under windows), performance |
| * seems poor */ |
| #elif defined(_MSC_VER) |
| #define XXH_rotl32(x, r) _rotl(x, r) |
| #define XXH_rotl64(x, r) _rotl64(x, r) |
| #else |
| #define XXH_rotl32(x, r) (((x) << (r)) | ((x) >> (32 - (r)))) |
| #define XXH_rotl64(x, r) (((x) << (r)) | ((x) >> (64 - (r)))) |
| #endif |
| |
| #if defined(_MSC_VER) /* Visual Studio */ |
| #define XXH_swap32 _byteswap_ulong |
| #elif XXH_GCC_VERSION >= 403 |
| #define XXH_swap32 __builtin_bswap32 |
| #else |
| static xxh_u32 XXH_swap32(xxh_u32 x) { |
| |
| return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) | |
| ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff); |
| |
| } |
| |
| #endif |
| |
| /* *************************** |
| * Memory reads |
| *****************************/ |
| typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
| |
| /* |
| * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
| * |
| * This is ideal for older compilers which don't inline memcpy. |
| */ |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) |
| |
| XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void *memPtr) { |
| |
| const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[0] | ((xxh_u32)bytePtr[1] << 8) | ((xxh_u32)bytePtr[2] << 16) | |
| ((xxh_u32)bytePtr[3] << 24); |
| |
| } |
| |
| XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void *memPtr) { |
| |
| const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[3] | ((xxh_u32)bytePtr[2] << 8) | ((xxh_u32)bytePtr[1] << 16) | |
| ((xxh_u32)bytePtr[0] << 24); |
| |
| } |
| |
| #else |
| XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void *ptr) { |
| |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
| |
| } |
| |
| static xxh_u32 XXH_readBE32(const void *ptr) { |
| |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
| |
| } |
| |
| #endif |
| |
| XXH_FORCE_INLINE xxh_u32 XXH_readLE32_align(const void * ptr, |
| XXH_alignment align) { |
| |
| if (align == XXH_unaligned) { |
| |
| return XXH_readLE32(ptr); |
| |
| } else { |
| |
| return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32 *)ptr |
| : XXH_swap32(*(const xxh_u32 *)ptr); |
| |
| } |
| |
| } |
| |
| /* ************************************* |
| * Misc |
| ***************************************/ |
| XXH_PUBLIC_API unsigned XXH_versionNumber(void) { |
| |
| return XXH_VERSION_NUMBER; |
| |
| } |
| |
| /* ******************************************************************* |
| * 32-bit hash functions |
| *********************************************************************/ |
| static const xxh_u32 XXH_PRIME32_1 = |
| 0x9E3779B1U; /* 0b10011110001101110111100110110001 */ |
| static const xxh_u32 XXH_PRIME32_2 = |
| 0x85EBCA77U; /* 0b10000101111010111100101001110111 */ |
| static const xxh_u32 XXH_PRIME32_3 = |
| 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */ |
| static const xxh_u32 XXH_PRIME32_4 = |
| 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */ |
| static const xxh_u32 XXH_PRIME32_5 = |
| 0x165667B1U; /* 0b00010110010101100110011110110001 */ |
| |
| #ifdef XXH_OLD_NAMES |
| #define PRIME32_1 XXH_PRIME32_1 |
| #define PRIME32_2 XXH_PRIME32_2 |
| #define PRIME32_3 XXH_PRIME32_3 |
| #define PRIME32_4 XXH_PRIME32_4 |
| #define PRIME32_5 XXH_PRIME32_5 |
| #endif |
| |
| static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) { |
| |
| acc += input * XXH_PRIME32_2; |
| acc = XXH_rotl32(acc, 13); |
| acc *= XXH_PRIME32_1; |
| #if defined(__GNUC__) && defined(__SSE4_1__) && \ |
| !defined(XXH_ENABLE_AUTOVECTORIZE) |
| /* |
| * UGLY HACK: |
| * This inline assembly hack forces acc into a normal register. This is the |
| * only thing that prevents GCC and Clang from autovectorizing the XXH32 |
| * loop (pragmas and attributes don't work for some resason) without globally |
| * disabling SSE4.1. |
| * |
| * The reason we want to avoid vectorization is because despite working on |
| * 4 integers at a time, there are multiple factors slowing XXH32 down on |
| * SSE4: |
| * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
| * newer chips!) making it slightly slower to multiply four integers at |
| * once compared to four integers independently. Even when pmulld was |
| * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
| * just to multiply unless doing a long operation. |
| * |
| * - Four instructions are required to rotate, |
| * movqda tmp, v // not required with VEX encoding |
| * pslld tmp, 13 // tmp <<= 13 |
| * psrld v, 19 // x >>= 19 |
| * por v, tmp // x |= tmp |
| * compared to one for scalar: |
| * roll v, 13 // reliably fast across the board |
| * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
| * |
| * - Instruction level parallelism is actually more beneficial here because |
| * the SIMD actually serializes this operation: While v1 is rotating, v2 |
| * can load data, while v3 can multiply. SSE forces them to operate |
| * together. |
| * |
| * How this hack works: |
| * __asm__("" // Declare an assembly block but don't declare any |
| * instructions : // However, as an Input/Output Operand, |
| * "+r" // constrain a read/write operand (+) as a general purpose |
| * register (r). (acc) // and set acc as the operand |
| * ); |
| * |
| * Because of the 'r', the compiler has promised that seed will be in a |
| * general purpose register and the '+' says that it will be 'read/write', |
| * so it has to assume it has changed. It is like volatile without all the |
| * loads and stores. |
| * |
| * Since the argument has to be in a normal register (not an SSE register), |
| * each time XXH32_round is called, it is impossible to vectorize. |
| */ |
| __asm__("" : "+r"(acc)); |
| #endif |
| return acc; |
| |
| } |
| |
| /* mix all bits */ |
| static xxh_u32 XXH32_avalanche(xxh_u32 h32) { |
| |
| h32 ^= h32 >> 15; |
| h32 *= XXH_PRIME32_2; |
| h32 ^= h32 >> 13; |
| h32 *= XXH_PRIME32_3; |
| h32 ^= h32 >> 16; |
| return (h32); |
| |
| } |
| |
| #define XXH_get32bits(p) XXH_readLE32_align(p, align) |
| |
| static xxh_u32 XXH32_finalize(xxh_u32 h32, const xxh_u8 *ptr, size_t len, |
| XXH_alignment align) { |
| |
| /* dummy comment */ |
| |
| #define XXH_PROCESS1 \ |
| do { \ |
| \ |
| h32 += (*ptr++) * XXH_PRIME32_5; \ |
| h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \ |
| \ |
| } while (0) |
| |
| #define XXH_PROCESS4 \ |
| do { \ |
| \ |
| h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
| ptr += 4; \ |
| h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \ |
| \ |
| } while (0) |
| |
| /* Compact rerolled version */ |
| if (XXH_REROLL) { |
| |
| len &= 15; |
| while (len >= 4) { |
| |
| XXH_PROCESS4; |
| len -= 4; |
| |
| } |
| |
| while (len > 0) { |
| |
| XXH_PROCESS1; |
| --len; |
| |
| } |
| |
| return XXH32_avalanche(h32); |
| |
| } else { |
| |
| switch (len & 15) /* or switch(bEnd - p) */ { |
| |
| case 12: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 8: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 4: |
| XXH_PROCESS4; |
| return XXH32_avalanche(h32); |
| |
| case 13: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 9: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 5: |
| XXH_PROCESS4; |
| XXH_PROCESS1; |
| return XXH32_avalanche(h32); |
| |
| case 14: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 10: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 6: |
| XXH_PROCESS4; |
| XXH_PROCESS1; |
| XXH_PROCESS1; |
| return XXH32_avalanche(h32); |
| |
| case 15: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 11: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 7: |
| XXH_PROCESS4; |
| /* fallthrough */ |
| case 3: |
| XXH_PROCESS1; |
| /* fallthrough */ |
| case 2: |
| XXH_PROCESS1; |
| /* fallthrough */ |
| case 1: |
| XXH_PROCESS1; |
| /* fallthrough */ |
| case 0: |
| return XXH32_avalanche(h32); |
| |
| } |
| |
| XXH_ASSERT(0); |
| return h32; /* reaching this point is deemed impossible */ |
| |
| } |
| |
| } |
| |
| #ifdef XXH_OLD_NAMES |
| #define PROCESS1 XXH_PROCESS1 |
| #define PROCESS4 XXH_PROCESS4 |
| #else |
| #undef XXH_PROCESS1 |
| #undef XXH_PROCESS4 |
| #endif |
| |
| XXH_FORCE_INLINE xxh_u32 XXH32_endian_align(const xxh_u8 *input, size_t len, |
| xxh_u32 seed, XXH_alignment align) { |
| |
| const xxh_u8 *bEnd = input + len; |
| xxh_u32 h32; |
| |
| #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
| (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
| if (input == NULL) { |
| |
| len = 0; |
| bEnd = input = (const xxh_u8 *)(size_t)16; |
| |
| } |
| |
| #endif |
| |
| if (len >= 16) { |
| |
| const xxh_u8 *const limit = bEnd - 15; |
| xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
| xxh_u32 v2 = seed + XXH_PRIME32_2; |
| xxh_u32 v3 = seed + 0; |
| xxh_u32 v4 = seed - XXH_PRIME32_1; |
| |
| do { |
| |
| v1 = XXH32_round(v1, XXH_get32bits(input)); |
| input += 4; |
| v2 = XXH32_round(v2, XXH_get32bits(input)); |
| input += 4; |
| v3 = XXH32_round(v3, XXH_get32bits(input)); |
| input += 4; |
| v4 = XXH32_round(v4, XXH_get32bits(input)); |
| input += 4; |
| |
| } while (input < limit); |
| |
| h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + |
| XXH_rotl32(v4, 18); |
| |
| } else { |
| |
| h32 = seed + XXH_PRIME32_5; |
| |
| } |
| |
| h32 += (xxh_u32)len; |
| |
| return XXH32_finalize(h32, input, len & 15, align); |
| |
| } |
| |
| XXH_PUBLIC_API XXH32_hash_t XXH32(const void *input, size_t len, |
| XXH32_hash_t seed) { |
| |
| #if 0 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH32_state_t state; |
| XXH32_reset(&state, seed); |
| XXH32_update(&state, (const xxh_u8*)input, len); |
| return XXH32_digest(&state); |
| |
| #else |
| |
| if (XXH_FORCE_ALIGN_CHECK) { |
| |
| if ((((size_t)input) & 3) == |
| 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
| return XXH32_endian_align((const xxh_u8 *)input, len, seed, XXH_aligned); |
| |
| } |
| |
| } |
| |
| return XXH32_endian_align((const xxh_u8 *)input, len, seed, XXH_unaligned); |
| #endif |
| |
| } |
| |
| /******* Hash streaming *******/ |
| |
| XXH_PUBLIC_API XXH32_state_t *XXH32_createState(void) { |
| |
| return (XXH32_state_t *)XXH_malloc(sizeof(XXH32_state_t)); |
| |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr) { |
| |
| XXH_free(statePtr); |
| return XXH_OK; |
| |
| } |
| |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t * dstState, |
| const XXH32_state_t *srcState) { |
| |
| memcpy(dstState, srcState, sizeof(*dstState)); |
| |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t *statePtr, |
| XXH32_hash_t seed) { |
| |
| XXH32_state_t state; /* using a local state to memcpy() in order to avoid |
| strict-aliasing warnings */ |
| memset(&state, 0, sizeof(state)); |
| state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
| state.v2 = seed + XXH_PRIME32_2; |
| state.v3 = seed + 0; |
| state.v4 = seed - XXH_PRIME32_1; |
| /* do not write into reserved, planned to be removed in a future version */ |
| memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
| return XXH_OK; |
| |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t *state, |
| const void *input, size_t len) { |
| |
| if (input == NULL) |
| #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
| (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
| return XXH_OK; |
| #else |
| return XXH_ERROR; |
| #endif |
| |
| { |
| |
| const xxh_u8 * p = (const xxh_u8 *)input; |
| const xxh_u8 *const bEnd = p + len; |
| |
| state->total_len_32 += (XXH32_hash_t)len; |
| state->large_len |= |
| (XXH32_hash_t)((len >= 16) | (state->total_len_32 >= 16)); |
| |
| if (state->memsize + len < 16) { /* fill in tmp buffer */ |
| XXH_memcpy((xxh_u8 *)(state->mem32) + state->memsize, input, len); |
| state->memsize += (XXH32_hash_t)len; |
| return XXH_OK; |
| |
| } |
| |
| if (state->memsize) { /* some data left from previous update */ |
| XXH_memcpy((xxh_u8 *)(state->mem32) + state->memsize, input, |
| 16 - state->memsize); |
| { |
| |
| const xxh_u32 *p32 = state->mem32; |
| state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); |
| p32++; |
| state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); |
| p32++; |
| state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); |
| p32++; |
| state->v4 = XXH32_round(state->v4, XXH_readLE32(p32)); |
| |
| } |
| |
| p += 16 - state->memsize; |
| state->memsize = 0; |
| |
| } |
| |
| if (p <= bEnd - 16) { |
| |
| const xxh_u8 *const limit = bEnd - 16; |
| xxh_u32 v1 = state->v1; |
| xxh_u32 v2 = state->v2; |
| xxh_u32 v3 = state->v3; |
| xxh_u32 v4 = state->v4; |
| |
| do { |
| |
| v1 = XXH32_round(v1, XXH_readLE32(p)); |
| p += 4; |
| v2 = XXH32_round(v2, XXH_readLE32(p)); |
| p += 4; |
| v3 = XXH32_round(v3, XXH_readLE32(p)); |
| p += 4; |
| v4 = XXH32_round(v4, XXH_readLE32(p)); |
| p += 4; |
| |
| } while (p <= limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| |
| } |
| |
| if (p < bEnd) { |
| |
| XXH_memcpy(state->mem32, p, (size_t)(bEnd - p)); |
| state->memsize = (unsigned)(bEnd - p); |
| |
| } |
| |
| } |
| |
| return XXH_OK; |
| |
| } |
| |
| XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t *state) { |
| |
| xxh_u32 h32; |
| |
| if (state->large_len) { |
| |
| h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + |
| XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
| |
| } else { |
| |
| h32 = state->v3 /* == seed */ + XXH_PRIME32_5; |
| |
| } |
| |
| h32 += state->total_len_32; |
| |
| return XXH32_finalize(h32, (const xxh_u8 *)state->mem32, state->memsize, |
| XXH_aligned); |
| |
| } |
| |
| /******* Canonical representation *******/ |
| |
| /* |
| * The default return values from XXH functions are unsigned 32 and 64 bit |
| * integers. |
| * |
| * The canonical representation uses big endian convention, the same convention |
| * as human-readable numbers (large digits first). |
| * |
| * This way, hash values can be written into a file or buffer, remaining |
| * comparable across different systems. |
| * |
| * The following functions allow transformation of hash values to and from their |
| * canonical format. |
| */ |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t *dst, |
| XXH32_hash_t hash) { |
| |
| XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
| memcpy(dst, &hash, sizeof(*dst)); |
| |
| } |
| |
| XXH_PUBLIC_API XXH32_hash_t |
| XXH32_hashFromCanonical(const XXH32_canonical_t *src) { |
| |
| return XXH_readBE32(src); |
| |
| } |
| |
| #ifndef XXH_NO_LONG_LONG |
| |
| /* ******************************************************************* |
| * 64-bit hash functions |
| *********************************************************************/ |
| |
| /******* Memory access *******/ |
| |
| typedef XXH64_hash_t xxh_u64; |
| |
| #ifdef XXH_OLD_NAMES |
| #define U64 xxh_u64 |
| #endif |
| |
| /*! |
| * XXH_REROLL_XXH64: |
| * Whether to reroll the XXH64_finalize() loop. |
| * |
| * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a |
| * performance gain on 64-bit hosts, as only one jump is required. |
| * |
| * However, on 32-bit hosts, because arithmetic needs to be done with two |
| * 32-bit registers, and 64-bit arithmetic needs to be simulated, it isn't |
| * beneficial to unroll. The code becomes ridiculously large (the largest |
| * function in the binary on i386!), and rerolling it saves anywhere from |
| * 3kB to 20kB. It is also slightly faster because it fits into cache better |
| * and is more likely to be inlined by the compiler. |
| * |
| * If XXH_REROLL is defined, this is ignored and the loop is always |
| * rerolled. |
| */ |
| #ifndef XXH_REROLL_XXH64 |
| #if (defined(__ILP32__) || defined(_ILP32)) || \ |
| !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \ |
| defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) || \ |
| defined(__PPC64__) || defined(__PPC64LE__) || \ |
| defined(__ppc64__) || defined(__powerpc64__) || \ |
| defined(__mips64__) || defined(__mips64)) || \ |
| (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) |
| #define XXH_REROLL_XXH64 1 |
| #else |
| #define XXH_REROLL_XXH64 0 |
| #endif |
| #endif /* !defined(XXH_REROLL_XXH64) */ |
| |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) |
| /* |
| * Manual byteshift. Best for old compilers which don't inline memcpy. |
| * We actually directly use XXH_readLE64 and XXH_readBE64. |
| */ |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2)) |
| |
| /* Force direct memory access. Only works on CPU which support unaligned memory |
| * access in hardware */ |
| static xxh_u64 XXH_read64(const void *memPtr) { |
| |
| return *(const xxh_u64 *)memPtr; |
| |
| } |
| |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1)) |
| |
| /* |
| * __pack instructions are safer, but compiler specific, hence potentially |
| * problematic for some compilers. |
| * |
| * Currently only defined for GCC and ICC. |
| */ |
| #ifdef XXH_OLD_NAMES |
| typedef union { |
| |
| xxh_u32 u32; |
| xxh_u64 u64; |
| |
| } __attribute__((packed)) unalign64; |
| |
| #endif |
| static xxh_u64 XXH_read64(const void *ptr) { |
| |
| typedef union { |
| |
| xxh_u32 u32; |
| xxh_u64 u64; |
| |
| } __attribute__((packed)) xxh_unalign64; |
| |
| return ((const xxh_unalign64 *)ptr)->u64; |
| |
| } |
| |
| #else |
| |
| /* |
| * Portable and safe solution. Generally efficient. |
| * see: https://stackoverflow.com/a/32095106/646947 |
| */ |
| static xxh_u64 XXH_read64(const void *memPtr) { |
| |
| xxh_u64 val; |
| memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| |
| } |
| |
| #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| |
| #if defined(_MSC_VER) /* Visual Studio */ |
| #define XXH_swap64 _byteswap_uint64 |
| #elif XXH_GCC_VERSION >= 403 |
| #define XXH_swap64 __builtin_bswap64 |
| #else |
| static xxh_u64 XXH_swap64(xxh_u64 x) { |
| |
| return ((x << 56) & 0xff00000000000000ULL) | |
| ((x << 40) & 0x00ff000000000000ULL) | |
| ((x << 24) & 0x0000ff0000000000ULL) | |
| ((x << 8) & 0x000000ff00000000ULL) | |
| ((x >> 8) & 0x00000000ff000000ULL) | |
| ((x >> 24) & 0x0000000000ff0000ULL) | |
| ((x >> 40) & 0x000000000000ff00ULL) | |
| ((x >> 56) & 0x00000000000000ffULL); |
| |
| } |
| |
| #endif |
| |
| /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3)) |
| |
| XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void *memPtr) { |
| |
| const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[0] | ((xxh_u64)bytePtr[1] << 8) | ((xxh_u64)bytePtr[2] << 16) | |
| ((xxh_u64)bytePtr[3] << 24) | ((xxh_u64)bytePtr[4] << 32) | |
| ((xxh_u64)bytePtr[5] << 40) | ((xxh_u64)bytePtr[6] << 48) | |
| ((xxh_u64)bytePtr[7] << 56); |
| |
| } |
| |
| XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void *memPtr) { |
| |
| const xxh_u8 *bytePtr = (const xxh_u8 *)memPtr; |
| return bytePtr[7] | ((xxh_u64)bytePtr[6] << 8) | ((xxh_u64)bytePtr[5] << 16) | |
| ((xxh_u64)bytePtr[4] << 24) | ((xxh_u64)bytePtr[3] << 32) | |
| ((xxh_u64)bytePtr[2] << 40) | ((xxh_u64)bytePtr[1] << 48) | |
| ((xxh_u64)bytePtr[0] << 56); |
| |
| } |
| |
| #else |
| XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void *ptr) { |
| |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
| |
| } |
| |
| static xxh_u64 XXH_readBE64(const void *ptr) { |
| |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
| |
| } |
| |
| #endif |
| |
| XXH_FORCE_INLINE xxh_u64 XXH_readLE64_align(const void * ptr, |
| XXH_alignment align) { |
| |
| if (align == XXH_unaligned) |
| return XXH_readLE64(ptr); |
| else |
| return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64 *)ptr |
| : XXH_swap64(*(const xxh_u64 *)ptr); |
| |
| } |
| |
| /******* xxh64 *******/ |
| |
| static const xxh_u64 XXH_PRIME64_1 = |
| 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 |
| */ |
| static const xxh_u64 XXH_PRIME64_2 = |
| 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 |
| */ |
| static const xxh_u64 XXH_PRIME64_3 = |
| 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 |
| */ |
| static const xxh_u64 XXH_PRIME64_4 = |
| 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 |
| */ |
| static const xxh_u64 XXH_PRIME64_5 = |
| 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 |
| */ |
| |
| #ifdef XXH_OLD_NAMES |
| #define PRIME64_1 XXH_PRIME64_1 |
| #define PRIME64_2 XXH_PRIME64_2 |
| #define PRIME64_3 XXH_PRIME64_3 |
| #define PRIME64_4 XXH_PRIME64_4 |
| #define PRIME64_5 XXH_PRIME64_5 |
| #endif |
| |
| static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) { |
| |
| acc += input * XXH_PRIME64_2; |
| acc = XXH_rotl64(acc, 31); |
| acc *= XXH_PRIME64_1; |
| return acc; |
| |
| } |
| |
| static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) { |
| |
| val = XXH64_round(0, val); |
| acc ^= val; |
| acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
| return acc; |
| |
| } |
| |
| static xxh_u64 XXH64_avalanche(xxh_u64 h64) { |
| |
| h64 ^= h64 >> 33; |
| h64 *= XXH_PRIME64_2; |
| h64 ^= h64 >> 29; |
| h64 *= XXH_PRIME64_3; |
| h64 ^= h64 >> 32; |
| return h64; |
| |
| } |
| |
| #define XXH_get64bits(p) XXH_readLE64_align(p, align) |
| |
| static xxh_u64 XXH64_finalize(xxh_u64 h64, const xxh_u8 *ptr, size_t len, |
| XXH_alignment align) { |
| |
| /* dummy comment */ |
| |
| #define XXH_PROCESS1_64 \ |
| do { \ |
| \ |
| h64 ^= (*ptr++) * XXH_PRIME64_5; \ |
| h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \ |
| \ |
| } while (0) |
| |
| #define XXH_PROCESS4_64 \ |
| do { \ |
| \ |
| h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \ |
| ptr += 4; \ |
| h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \ |
| \ |
| } while (0) |
| |
| #define XXH_PROCESS8_64 \ |
| do { \ |
| \ |
| xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \ |
| ptr += 8; \ |
| h64 ^= k1; \ |
| h64 = XXH_rotl64(h64, 27) * XXH_PRIME64_1 + XXH_PRIME64_4; \ |
| \ |
| } while (0) |
| |
| /* Rerolled version for 32-bit targets is faster and much smaller. */ |
| if (XXH_REROLL || XXH_REROLL_XXH64) { |
| |
| len &= 31; |
| while (len >= 8) { |
| |
| XXH_PROCESS8_64; |
| len -= 8; |
| |
| } |
| |
| if (len >= 4) { |
| |
| XXH_PROCESS4_64; |
| len -= 4; |
| |
| } |
| |
| while (len > 0) { |
| |
| XXH_PROCESS1_64; |
| --len; |
| |
| } |
| |
| return XXH64_avalanche(h64); |
| |
| } else { |
| |
| switch (len & 31) { |
| |
| case 24: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 16: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 8: |
| XXH_PROCESS8_64; |
| return XXH64_avalanche(h64); |
| |
| case 28: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 20: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 12: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 4: |
| XXH_PROCESS4_64; |
| return XXH64_avalanche(h64); |
| |
| case 25: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 17: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 9: |
| XXH_PROCESS8_64; |
| XXH_PROCESS1_64; |
| return XXH64_avalanche(h64); |
| |
| case 29: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 21: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 13: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 5: |
| XXH_PROCESS4_64; |
| XXH_PROCESS1_64; |
| return XXH64_avalanche(h64); |
| |
| case 26: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 18: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 10: |
| XXH_PROCESS8_64; |
| XXH_PROCESS1_64; |
| XXH_PROCESS1_64; |
| return XXH64_avalanche(h64); |
| |
| case 30: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 22: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 14: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 6: |
| XXH_PROCESS4_64; |
| XXH_PROCESS1_64; |
| XXH_PROCESS1_64; |
| return XXH64_avalanche(h64); |
| |
| case 27: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 19: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 11: |
| XXH_PROCESS8_64; |
| XXH_PROCESS1_64; |
| XXH_PROCESS1_64; |
| XXH_PROCESS1_64; |
| return XXH64_avalanche(h64); |
| |
| case 31: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 23: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 15: |
| XXH_PROCESS8_64; |
| /* fallthrough */ |
| case 7: |
| XXH_PROCESS4_64; |
| /* fallthrough */ |
| case 3: |
| XXH_PROCESS1_64; |
| /* fallthrough */ |
| case 2: |
| XXH_PROCESS1_64; |
| /* fallthrough */ |
| case 1: |
| XXH_PROCESS1_64; |
| /* fallthrough */ |
| case 0: |
| return XXH64_avalanche(h64); |
| |
| } |
| |
| } |
| |
| /* impossible to reach */ |
| XXH_ASSERT(0); |
| return 0; /* unreachable, but some compilers complain without it */ |
| |
| } |
| |
| #ifdef XXH_OLD_NAMES |
| #define PROCESS1_64 XXH_PROCESS1_64 |
| #define PROCESS4_64 XXH_PROCESS4_64 |
| #define PROCESS8_64 XXH_PROCESS8_64 |
| #else |
| #undef XXH_PROCESS1_64 |
| #undef XXH_PROCESS4_64 |
| #undef XXH_PROCESS8_64 |
| #endif |
| |
| XXH_FORCE_INLINE xxh_u64 XXH64_endian_align(const xxh_u8 *input, size_t len, |
| xxh_u64 seed, XXH_alignment align) { |
| |
| const xxh_u8 *bEnd = input + len; |
| xxh_u64 h64; |
| |
| #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
| (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
| if (input == NULL) { |
| |
| len = 0; |
| bEnd = input = (const xxh_u8 *)(size_t)32; |
| |
| } |
| |
| #endif |
| |
| if (len >= 32) { |
| |
| const xxh_u8 *const limit = bEnd - 32; |
| xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
| xxh_u64 v2 = seed + XXH_PRIME64_2; |
| xxh_u64 v3 = seed + 0; |
| xxh_u64 v4 = seed - XXH_PRIME64_1; |
| |
| do { |
| |
| v1 = XXH64_round(v1, XXH_get64bits(input)); |
| input += 8; |
| v2 = XXH64_round(v2, XXH_get64bits(input)); |
| input += 8; |
| v3 = XXH64_round(v3, XXH_get64bits(input)); |
| input += 8; |
| v4 = XXH64_round(v4, XXH_get64bits(input)); |
| input += 8; |
| |
| } while (input <= limit); |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + |
| XXH_rotl64(v4, 18); |
| h64 = XXH64_mergeRound(h64, v1); |
| h64 = XXH64_mergeRound(h64, v2); |
| h64 = XXH64_mergeRound(h64, v3); |
| h64 = XXH64_mergeRound(h64, v4); |
| |
| } else { |
| |
| h64 = seed + XXH_PRIME64_5; |
| |
| } |
| |
| h64 += (xxh_u64)len; |
| |
| return XXH64_finalize(h64, input, len, align); |
| |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t XXH64(const void *input, size_t len, |
| XXH64_hash_t seed) { |
| |
| #if 0 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH64_state_t state; |
| XXH64_reset(&state, seed); |
| XXH64_update(&state, (const xxh_u8*)input, len); |
| return XXH64_digest(&state); |
| |
| #else |
| |
| if (XXH_FORCE_ALIGN_CHECK) { |
| |
| if ((((size_t)input) & 7) == |
| 0) { /* Input is aligned, let's leverage the speed advantage */ |
| return XXH64_endian_align((const xxh_u8 *)input, len, seed, XXH_aligned); |
| |
| } |
| |
| } |
| |
| return XXH64_endian_align((const xxh_u8 *)input, len, seed, XXH_unaligned); |
| |
| #endif |
| |
| } |
| |
| /******* Hash Streaming *******/ |
| |
| XXH_PUBLIC_API XXH64_state_t *XXH64_createState(void) { |
| |
| return (XXH64_state_t *)XXH_malloc(sizeof(XXH64_state_t)); |
| |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr) { |
| |
| XXH_free(statePtr); |
| return XXH_OK; |
| |
| } |
| |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t * dstState, |
| const XXH64_state_t *srcState) { |
| |
| memcpy(dstState, srcState, sizeof(*dstState)); |
| |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t *statePtr, |
| XXH64_hash_t seed) { |
| |
| XXH64_state_t state; /* use a local state to memcpy() in order to avoid |
| strict-aliasing warnings */ |
| memset(&state, 0, sizeof(state)); |
| state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
| state.v2 = seed + XXH_PRIME64_2; |
| state.v3 = seed + 0; |
| state.v4 = seed - XXH_PRIME64_1; |
| /* do not write into reserved64, might be removed in a future version */ |
| memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64)); |
| return XXH_OK; |
| |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t *state, |
| const void *input, size_t len) { |
| |
| if (input == NULL) |
| #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
| (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
| return XXH_OK; |
| #else |
| return XXH_ERROR; |
| #endif |
| |
| { |
| |
| const xxh_u8 * p = (const xxh_u8 *)input; |
| const xxh_u8 *const bEnd = p + len; |
| |
| state->total_len += len; |
| |
| if (state->memsize + len < 32) { /* fill in tmp buffer */ |
| XXH_memcpy(((xxh_u8 *)state->mem64) + state->memsize, input, len); |
| state->memsize += (xxh_u32)len; |
| return XXH_OK; |
| |
| } |
| |
| if (state->memsize) { /* tmp buffer is full */ |
| XXH_memcpy(((xxh_u8 *)state->mem64) + state->memsize, input, |
| 32 - state->memsize); |
| state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64 + 0)); |
| state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64 + 1)); |
| state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64 + 2)); |
| state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64 + 3)); |
| p += 32 - state->memsize; |
| state->memsize = 0; |
| |
| } |
| |
| if (p + 32 <= bEnd) { |
| |
| const xxh_u8 *const limit = bEnd - 32; |
| xxh_u64 v1 = state->v1; |
| xxh_u64 v2 = state->v2; |
| xxh_u64 v3 = state->v3; |
| xxh_u64 v4 = state->v4; |
| |
| do { |
| |
| v1 = XXH64_round(v1, XXH_readLE64(p)); |
| p += 8; |
| v2 = XXH64_round(v2, XXH_readLE64(p)); |
| p += 8; |
| v3 = XXH64_round(v3, XXH_readLE64(p)); |
| p += 8; |
| v4 = XXH64_round(v4, XXH_readLE64(p)); |
| p += 8; |
| |
| } while (p <= limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| |
| } |
| |
| if (p < bEnd) { |
| |
| XXH_memcpy(state->mem64, p, (size_t)(bEnd - p)); |
| state->memsize = (unsigned)(bEnd - p); |
| |
| } |
| |
| } |
| |
| return XXH_OK; |
| |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t *state) { |
| |
| xxh_u64 h64; |
| |
| if (state->total_len >= 32) { |
| |
| xxh_u64 const v1 = state->v1; |
| xxh_u64 const v2 = state->v2; |
| xxh_u64 const v3 = state->v3; |
| xxh_u64 const v4 = state->v4; |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + |
| XXH_rotl64(v4, 18); |
| h64 = XXH64_mergeRound(h64, v1); |
| h64 = XXH64_mergeRound(h64, v2); |
| h64 = XXH64_mergeRound(h64, v3); |
| h64 = XXH64_mergeRound(h64, v4); |
| |
| } else { |
| |
| h64 = state->v3 /*seed*/ + XXH_PRIME64_5; |
| |
| } |
| |
| h64 += (xxh_u64)state->total_len; |
| |
| return XXH64_finalize(h64, (const xxh_u8 *)state->mem64, |
| (size_t)state->total_len, XXH_aligned); |
| |
| } |
| |
| /******* Canonical representation *******/ |
| |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t *dst, |
| XXH64_hash_t hash) { |
| |
| XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
| memcpy(dst, &hash, sizeof(*dst)); |
| |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t |
| XXH64_hashFromCanonical(const XXH64_canonical_t *src) { |
| |
| return XXH_readBE64(src); |
| |
| } |
| |
| /* ********************************************************************* |
| * XXH3 |
| * New generation hash designed for speed on small keys and vectorization |
| ************************************************************************ */ |
| |
| #include "xxh3.h" |
| |
| #endif /* XXH_NO_LONG_LONG */ |
| |
| #endif /* XXH_IMPLEMENTATION */ |
| |
| #if defined(__cplusplus) |
| |
| } |
| |
| #endif |
| |