blob: f6cdbe9ef7d35d01ff251f69533ed4c61d03e419 [file] [log] [blame]
/*
american fuzzy lop++ - LLVM LTO instrumentation pass
----------------------------------------------------
Written by Marc Heuse <mh@mh-sec.de>
Copyright 2019-2020 AFLplusplus Project. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0
This library is plugged into LLVM when invoking clang through afl-clang-lto.
*/
#define AFL_LLVM_PASS
#include "config.h"
#include "debug.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <list>
#include <string>
#include <fstream>
#include <set>
#include <iostream>
#include "llvm/Config/llvm-config.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Pass.h"
#include "llvm/IR/Constants.h"
#include "afl-llvm-common.h"
using namespace llvm;
namespace {
class AFLLTOPass : public ModulePass {
public:
static char ID;
AFLLTOPass() : ModulePass(ID) {
char *ptr;
if (getenv("AFL_DEBUG")) debug = 1;
if ((ptr = getenv("AFL_LLVM_LTO_STARTID")) != NULL)
if ((afl_global_id = (uint32_t)atoi(ptr)) < 0 ||
afl_global_id >= MAP_SIZE)
FATAL("AFL_LLVM_LTO_STARTID value of \"%s\" is not between 0 and %u\n",
ptr, MAP_SIZE - 1);
skip_nozero = getenv("AFL_LLVM_SKIP_NEVERZERO");
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
ModulePass::getAnalysisUsage(AU);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
}
bool runOnModule(Module &M) override;
protected:
uint32_t afl_global_id = 1, autodictionary = 1;
uint32_t function_minimum_size = 1;
uint32_t inst_blocks = 0, inst_funcs = 0, total_instr = 0;
unsigned long long int map_addr = 0x10000;
char * skip_nozero = NULL;
};
} // namespace
bool AFLLTOPass::runOnModule(Module &M) {
LLVMContext & C = M.getContext();
std::vector<std::string> dictionary;
// std::vector<CallInst *> calls;
DenseMap<Value *, std::string *> valueMap;
std::vector<BasicBlock *> BlockList;
char * ptr;
FILE * documentFile = NULL;
size_t found = 0;
srand((unsigned int)time(NULL));
unsigned long long int moduleID =
(((unsigned long long int)(rand() & 0xffffffff)) << 32) | getpid();
IntegerType *Int8Ty = IntegerType::getInt8Ty(C);
IntegerType *Int32Ty = IntegerType::getInt32Ty(C);
IntegerType *Int64Ty = IntegerType::getInt64Ty(C);
/* Show a banner */
setvbuf(stdout, NULL, _IONBF, 0);
if ((isatty(2) && !getenv("AFL_QUIET")) || debug) {
SAYF(cCYA "afl-llvm-lto" VERSION cRST
" by Marc \"vanHauser\" Heuse <mh@mh-sec.de>\n");
} else
be_quiet = 1;
if ((ptr = getenv("AFL_LLVM_DOCUMENT_IDS")) != NULL) {
if ((documentFile = fopen(ptr, "a")) == NULL)
WARNF("Cannot access document file %s", ptr);
}
// we make this the default as the fixed map has problems with
// defered forkserver, early constructors, ifuncs and maybe more
/*if (getenv("AFL_LLVM_MAP_DYNAMIC"))*/
map_addr = 0;
if ((ptr = getenv("AFL_LLVM_MAP_ADDR"))) {
uint64_t val;
if (!*ptr || !strcmp(ptr, "0") || !strcmp(ptr, "0x0")) {
map_addr = 0;
} else if (getenv("AFL_LLVM_MAP_DYNAMIC")) {
FATAL(
"AFL_LLVM_MAP_ADDR and AFL_LLVM_MAP_DYNAMIC cannot be used together");
} else if (strncmp(ptr, "0x", 2) != 0) {
map_addr = 0x10000; // the default
} else {
val = strtoull(ptr, NULL, 16);
if (val < 0x100 || val > 0xffffffff00000000) {
FATAL(
"AFL_LLVM_MAP_ADDR must be a value between 0x100 and "
"0xffffffff00000000");
}
map_addr = val;
}
}
if (debug) { fprintf(stderr, "map address is 0x%llx\n", map_addr); }
/* Get/set the globals for the SHM region. */
GlobalVariable *AFLMapPtr = NULL;
Value * MapPtrFixed = NULL;
if (!map_addr) {
AFLMapPtr =
new GlobalVariable(M, PointerType::get(Int8Ty, 0), false,
GlobalValue::ExternalLinkage, 0, "__afl_area_ptr");
} else {
ConstantInt *MapAddr = ConstantInt::get(Int64Ty, map_addr);
MapPtrFixed =
ConstantExpr::getIntToPtr(MapAddr, PointerType::getUnqual(Int8Ty));
}
ConstantInt *Zero = ConstantInt::get(Int8Ty, 0);
ConstantInt *One = ConstantInt::get(Int8Ty, 1);
// This dumps all inialized global strings - might be useful in the future
/*
for (auto G=M.getGlobalList().begin(); G!=M.getGlobalList().end(); G++) {
GlobalVariable &GV=*G;
if (!GV.getName().str().empty()) {
fprintf(stderr, "Global Variable: %s", GV.getName().str().c_str());
if (GV.hasInitializer())
if (auto *Val = dyn_cast<ConstantDataArray>(GV.getInitializer()))
fprintf(stderr, " Value: \"%s\"", Val->getAsString().str().c_str());
fprintf(stderr, "\n");
}
}
*/
scanForDangerousFunctions(&M);
/* Instrument all the things! */
int inst_blocks = 0;
for (auto &F : M) {
/*For debugging
AttributeSet X = F.getAttributes().getFnAttributes();
fprintf(stderr, "DEBUG: Module %s Function %s attributes %u\n",
M.getName().str().c_str(), F.getName().str().c_str(),
X.getNumAttributes());
*/
if (F.size() < function_minimum_size) continue;
if (isIgnoreFunction(&F)) continue;
// the instrument file list check
AttributeList Attrs = F.getAttributes();
if (Attrs.hasAttribute(-1, StringRef("skipinstrument"))) {
if (debug)
fprintf(stderr,
"DEBUG: Function %s is not in a source file that was specified "
"in the instrument file list\n",
F.getName().str().c_str());
continue;
}
std::vector<BasicBlock *> InsBlocks;
if (autodictionary) {
/* Some implementation notes.
*
* We try to handle 3 cases:
* - memcmp("foo", arg, 3) <- literal string
* - static char globalvar[] = "foo";
* memcmp(globalvar, arg, 3) <- global variable
* - char localvar[] = "foo";
* memcmp(locallvar, arg, 3) <- local variable
*
* The local variable case is the hardest. We can only detect that
* case if there is no reassignment or change in the variable.
* And it might not work across llvm version.
* What we do is hooking the initializer function for local variables
* (llvm.memcpy.p0i8.p0i8.i64) and note the string and the assigned
* variable. And if that variable is then used in a compare function
* we use that noted string.
* This seems not to work for tokens that have a size <= 4 :-(
*
* - if the compared length is smaller than the string length we
* save the full string. This is likely better for fuzzing but
* might be wrong in a few cases depending on optimizers
*
* - not using StringRef because there is a bug in the llvm 11
* checkout I am using which sometimes points to wrong strings
*
* Over and out. Took me a full day. damn. mh/vh
*/
for (auto &BB : F) {
for (auto &IN : BB) {
CallInst *callInst = nullptr;
CmpInst * cmpInst = nullptr;
if ((cmpInst = dyn_cast<CmpInst>(&IN))) {
Value * op = cmpInst->getOperand(1);
ConstantInt *ilen = dyn_cast<ConstantInt>(op);
if (ilen && ilen->uge(0xffffffffffffffff) == false) {
u64 val2 = 0, val = ilen->getZExtValue();
u32 len = 0;
if (val > 0x10000 && val < 0xffffffff) len = 4;
if (val > 0x100000001 && val < 0xffffffffffffffff) len = 8;
if (len) {
auto c = cmpInst->getPredicate();
switch (c) {
case CmpInst::FCMP_OGT: // fall through
case CmpInst::FCMP_OLE: // fall through
case CmpInst::ICMP_SLE: // fall through
case CmpInst::ICMP_SGT:
// signed comparison and it is a negative constant
if ((len == 4 && (val & 80000000)) ||
(len == 8 && (val & 8000000000000000))) {
if ((val & 0xffff) != 1) val2 = val - 1;
break;
}
// fall through
case CmpInst::FCMP_UGT: // fall through
case CmpInst::FCMP_ULE: // fall through
case CmpInst::ICMP_UGT: // fall through
case CmpInst::ICMP_ULE:
if ((val & 0xffff) != 0xfffe) val2 = val + 1;
break;
case CmpInst::FCMP_OLT: // fall through
case CmpInst::FCMP_OGE: // fall through
case CmpInst::ICMP_SLT: // fall through
case CmpInst::ICMP_SGE:
// signed comparison and it is a negative constant
if ((len == 4 && (val & 80000000)) ||
(len == 8 && (val & 8000000000000000))) {
if ((val & 0xffff) != 1) val2 = val - 1;
break;
}
// fall through
case CmpInst::FCMP_ULT: // fall through
case CmpInst::FCMP_UGE: // fall through
case CmpInst::ICMP_ULT: // fall through
case CmpInst::ICMP_UGE:
if ((val & 0xffff) != 1) val2 = val - 1;
break;
default:
val2 = 0;
}
dictionary.push_back(std::string((char *)&val, len));
found++;
if (val2) {
dictionary.push_back(std::string((char *)&val2, len));
found++;
}
}
}
}
if ((callInst = dyn_cast<CallInst>(&IN))) {
bool isStrcmp = true;
bool isMemcmp = true;
bool isStrncmp = true;
bool isStrcasecmp = true;
bool isStrncasecmp = true;
bool isIntMemcpy = true;
bool isStdString = true;
bool addedNull = false;
size_t optLen = 0;
Function *Callee = callInst->getCalledFunction();
if (!Callee) continue;
if (callInst->getCallingConv() != llvm::CallingConv::C) continue;
std::string FuncName = Callee->getName().str();
isStrcmp &= !FuncName.compare("strcmp");
isMemcmp &=
(!FuncName.compare("memcmp") || !FuncName.compare("bcmp"));
isStrncmp &= !FuncName.compare("strncmp");
isStrcasecmp &= !FuncName.compare("strcasecmp");
isStrncasecmp &= !FuncName.compare("strncasecmp");
isIntMemcpy &= !FuncName.compare("llvm.memcpy.p0i8.p0i8.i64");
isStdString &=
((FuncName.find("basic_string") != std::string::npos &&
FuncName.find("compare") != std::string::npos) ||
(FuncName.find("basic_string") != std::string::npos &&
FuncName.find("find") != std::string::npos));
/* we do something different here, putting this BB and the
successors in a block map */
if (!FuncName.compare("__afl_persistent_loop")) {
BlockList.push_back(&BB);
/*
for (succ_iterator SI = succ_begin(&BB), SE =
succ_end(&BB); SI != SE; ++SI) {
BasicBlock *succ = *SI;
BlockList.push_back(succ);
}
*/
}
if (!isStrcmp && !isMemcmp && !isStrncmp && !isStrcasecmp &&
!isStrncasecmp && !isIntMemcpy && !isStdString)
continue;
/* Verify the strcmp/memcmp/strncmp/strcasecmp/strncasecmp function
* prototype */
FunctionType *FT = Callee->getFunctionType();
isStrcmp &= FT->getNumParams() == 2 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext());
isStrcasecmp &= FT->getNumParams() == 2 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext());
isMemcmp &= FT->getNumParams() == 3 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0)->isPointerTy() &&
FT->getParamType(1)->isPointerTy() &&
FT->getParamType(2)->isIntegerTy();
isStrncmp &= FT->getNumParams() == 3 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext()) &&
FT->getParamType(2)->isIntegerTy();
isStrncasecmp &= FT->getNumParams() == 3 &&
FT->getReturnType()->isIntegerTy(32) &&
FT->getParamType(0) == FT->getParamType(1) &&
FT->getParamType(0) ==
IntegerType::getInt8PtrTy(M.getContext()) &&
FT->getParamType(2)->isIntegerTy();
isStdString &= FT->getNumParams() >= 2 &&
FT->getParamType(0)->isPointerTy() &&
FT->getParamType(1)->isPointerTy();
if (!isStrcmp && !isMemcmp && !isStrncmp && !isStrcasecmp &&
!isStrncasecmp && !isIntMemcpy && !isStdString)
continue;
/* is a str{n,}{case,}cmp/memcmp, check if we have
* str{case,}cmp(x, "const") or str{case,}cmp("const", x)
* strn{case,}cmp(x, "const", ..) or strn{case,}cmp("const", x, ..)
* memcmp(x, "const", ..) or memcmp("const", x, ..) */
Value *Str1P = callInst->getArgOperand(0),
*Str2P = callInst->getArgOperand(1);
std::string Str1, Str2;
StringRef TmpStr;
bool HasStr1;
getConstantStringInfo(Str1P, TmpStr);
if (TmpStr.empty()) {
HasStr1 = false;
} else {
HasStr1 = true;
Str1 = TmpStr.str();
}
bool HasStr2;
getConstantStringInfo(Str2P, TmpStr);
if (TmpStr.empty()) {
HasStr2 = false;
} else {
HasStr2 = true;
Str2 = TmpStr.str();
}
if (debug)
fprintf(stderr, "F:%s %p(%s)->\"%s\"(%s) %p(%s)->\"%s\"(%s)\n",
FuncName.c_str(), Str1P, Str1P->getName().str().c_str(),
Str1.c_str(), HasStr1 == true ? "true" : "false", Str2P,
Str2P->getName().str().c_str(), Str2.c_str(),
HasStr2 == true ? "true" : "false");
// we handle the 2nd parameter first because of llvm memcpy
if (!HasStr2) {
auto *Ptr = dyn_cast<ConstantExpr>(Str2P);
if (Ptr && Ptr->isGEPWithNoNotionalOverIndexing()) {
if (auto *Var = dyn_cast<GlobalVariable>(Ptr->getOperand(0))) {
if (Var->hasInitializer()) {
if (auto *Array = dyn_cast<ConstantDataArray>(
Var->getInitializer())) {
HasStr2 = true;
Str2 = Array->getRawDataValues().str();
}
}
}
}
}
// for the internal memcpy routine we only care for the second
// parameter and are not reporting anything.
if (isIntMemcpy == true) {
if (HasStr2 == true) {
Value * op2 = callInst->getArgOperand(2);
ConstantInt *ilen = dyn_cast<ConstantInt>(op2);
if (ilen) {
uint64_t literalLength = Str2.size();
uint64_t optLength = ilen->getZExtValue();
if (literalLength + 1 == optLength) {
Str2.append("\0", 1); // add null byte
// addedNull = true;
}
}
valueMap[Str1P] = new std::string(Str2);
if (debug)
fprintf(stderr, "Saved: %s for %p\n", Str2.c_str(), Str1P);
continue;
}
continue;
}
// Neither a literal nor a global variable?
// maybe it is a local variable that we saved
if (!HasStr2) {
std::string *strng = valueMap[Str2P];
if (strng && !strng->empty()) {
Str2 = *strng;
HasStr2 = true;
if (debug)
fprintf(stderr, "Filled2: %s for %p\n", strng->c_str(),
Str2P);
}
}
if (!HasStr1) {
auto Ptr = dyn_cast<ConstantExpr>(Str1P);
if (Ptr && Ptr->isGEPWithNoNotionalOverIndexing()) {
if (auto *Var = dyn_cast<GlobalVariable>(Ptr->getOperand(0))) {
if (Var->hasInitializer()) {
if (auto *Array = dyn_cast<ConstantDataArray>(
Var->getInitializer())) {
HasStr1 = true;
Str1 = Array->getRawDataValues().str();
}
}
}
}
}
// Neither a literal nor a global variable?
// maybe it is a local variable that we saved
if (!HasStr1) {
std::string *strng = valueMap[Str1P];
if (strng && !strng->empty()) {
Str1 = *strng;
HasStr1 = true;
if (debug)
fprintf(stderr, "Filled1: %s for %p\n", strng->c_str(),
Str1P);
}
}
/* handle cases of one string is const, one string is variable */
if (!(HasStr1 ^ HasStr2)) continue;
std::string thestring;
if (HasStr1)
thestring = Str1;
else
thestring = Str2;
optLen = thestring.length();
if (optLen < 2 || (optLen == 2 && !thestring[1])) { continue; }
if (isMemcmp || isStrncmp || isStrncasecmp) {
Value * op2 = callInst->getArgOperand(2);
ConstantInt *ilen = dyn_cast<ConstantInt>(op2);
if (ilen) {
uint64_t literalLength = optLen;
optLen = ilen->getZExtValue();
if (optLen < 2) { continue; }
if (literalLength + 1 == optLen) { // add null byte
thestring.append("\0", 1);
addedNull = true;
}
}
}
// add null byte if this is a string compare function and a null
// was not already added
if (!isMemcmp) {
if (addedNull == false && thestring[optLen - 1] != '\0') {
thestring.append("\0", 1); // add null byte
optLen++;
}
if (!isStdString) {
// ensure we do not have garbage
size_t offset = thestring.find('\0', 0);
if (offset + 1 < optLen) optLen = offset + 1;
thestring = thestring.substr(0, optLen);
}
}
if (!be_quiet) {
fprintf(stderr, "%s: length %zu/%zu \"", FuncName.c_str(), optLen,
thestring.length());
for (uint8_t i = 0; i < thestring.length(); i++) {
uint8_t c = thestring[i];
if (c <= 32 || c >= 127)
fprintf(stderr, "\\x%02x", c);
else
fprintf(stderr, "%c", c);
}
fprintf(stderr, "\"\n");
}
// we take the longer string, even if the compare was to a
// shorter part. Note that depending on the optimizer of the
// compiler this can be wrong, but it is more likely that this
// is helping the fuzzer
if (optLen != thestring.length()) optLen = thestring.length();
if (optLen > MAX_AUTO_EXTRA) optLen = MAX_AUTO_EXTRA;
if (optLen < MIN_AUTO_EXTRA) // too short? skip
continue;
dictionary.push_back(thestring.substr(0, optLen));
}
}
}
}
for (auto &BB : F) {
if (F.size() == 1) {
InsBlocks.push_back(&BB);
continue;
}
uint32_t succ = 0;
for (succ_iterator SI = succ_begin(&BB), SE = succ_end(&BB); SI != SE;
++SI)
if ((*SI)->size() > 0) succ++;
if (succ < 2) // no need to instrument
continue;
if (BlockList.size()) {
int skip = 0;
for (uint32_t k = 0; k < BlockList.size(); k++) {
if (&BB == BlockList[k]) {
if (debug)
fprintf(stderr,
"DEBUG: Function %s skipping BB with/after __afl_loop\n",
F.getName().str().c_str());
skip = 1;
}
}
if (skip) continue;
}
InsBlocks.push_back(&BB);
}
if (InsBlocks.size() > 0) {
uint32_t i = InsBlocks.size();
do {
--i;
BasicBlock * newBB = NULL;
BasicBlock * origBB = &(*InsBlocks[i]);
std::vector<BasicBlock *> Successors;
Instruction * TI = origBB->getTerminator();
uint32_t fs = origBB->getParent()->size();
uint32_t countto;
for (succ_iterator SI = succ_begin(origBB), SE = succ_end(origBB);
SI != SE; ++SI) {
BasicBlock *succ = *SI;
Successors.push_back(succ);
}
if (fs == 1) {
newBB = origBB;
countto = 1;
} else {
if (TI == NULL || TI->getNumSuccessors() < 2) continue;
countto = Successors.size();
}
// if (Successors.size() != TI->getNumSuccessors())
// FATAL("Different successor numbers %lu <-> %u\n", Successors.size(),
// TI->getNumSuccessors());
for (uint32_t j = 0; j < countto; j++) {
if (fs != 1) newBB = llvm::SplitEdge(origBB, Successors[j]);
if (!newBB) {
if (!be_quiet) WARNF("Split failed!");
continue;
}
if (documentFile) {
fprintf(documentFile, "ModuleID=%llu Function=%s edgeID=%u\n",
moduleID, F.getName().str().c_str(), afl_global_id);
}
BasicBlock::iterator IP = newBB->getFirstInsertionPt();
IRBuilder<> IRB(&(*IP));
/* Set the ID of the inserted basic block */
ConstantInt *CurLoc = ConstantInt::get(Int32Ty, afl_global_id++);
/* Load SHM pointer */
Value *MapPtrIdx;
if (map_addr) {
MapPtrIdx = IRB.CreateGEP(MapPtrFixed, CurLoc);
} else {
LoadInst *MapPtr = IRB.CreateLoad(AFLMapPtr);
MapPtr->setMetadata(M.getMDKindID("nosanitize"),
MDNode::get(C, None));
MapPtrIdx = IRB.CreateGEP(MapPtr, CurLoc);
}
/* Update bitmap */
LoadInst *Counter = IRB.CreateLoad(MapPtrIdx);
Counter->setMetadata(M.getMDKindID("nosanitize"),
MDNode::get(C, None));
Value *Incr = IRB.CreateAdd(Counter, One);
if (skip_nozero == NULL) {
auto cf = IRB.CreateICmpEQ(Incr, Zero);
auto carry = IRB.CreateZExt(cf, Int8Ty);
Incr = IRB.CreateAdd(Incr, carry);
}
IRB.CreateStore(Incr, MapPtrIdx)
->setMetadata(M.getMDKindID("nosanitize"), MDNode::get(C, None));
// done :)
inst_blocks++;
}
} while (i > 0);
}
}
if (documentFile) fclose(documentFile);
documentFile = NULL;
// save highest location ID to global variable
// do this after each function to fail faster
if (!be_quiet && afl_global_id > MAP_SIZE &&
afl_global_id > FS_OPT_MAX_MAPSIZE) {
uint32_t pow2map = 1, map = afl_global_id;
while ((map = map >> 1))
pow2map++;
WARNF(
"We have %u blocks to instrument but the map size is only %u. Either "
"edit config.h and set MAP_SIZE_POW2 from %d to %u, then recompile "
"afl-fuzz and llvm_mode and then make this target - or set "
"AFL_MAP_SIZE with at least size %u when running afl-fuzz with this "
"target.",
afl_global_id, MAP_SIZE, MAP_SIZE_POW2, pow2map, afl_global_id);
}
if (!getenv("AFL_LLVM_LTO_DONTWRITEID") || dictionary.size() || map_addr) {
// yes we could create our own function, insert it into ctors ...
// but this would be a pain in the butt ... so we use afl-llvm-rt-lto.o
Function *f = M.getFunction("__afl_auto_init_globals");
if (!f) {
fprintf(stderr,
"Error: init function could not be found (this should not "
"happen)\n");
exit(-1);
}
BasicBlock *bb = &f->getEntryBlock();
if (!bb) {
fprintf(stderr,
"Error: init function does not have an EntryBlock (this should "
"not happen)\n");
exit(-1);
}
BasicBlock::iterator IP = bb->getFirstInsertionPt();
IRBuilder<> IRB(&(*IP));
if (map_addr) {
GlobalVariable *AFLMapAddrFixed = new GlobalVariable(
M, Int64Ty, true, GlobalValue::ExternalLinkage, 0, "__afl_map_addr");
ConstantInt *MapAddr = ConstantInt::get(Int64Ty, map_addr);
StoreInst * StoreMapAddr = IRB.CreateStore(MapAddr, AFLMapAddrFixed);
StoreMapAddr->setMetadata(M.getMDKindID("nosanitize"),
MDNode::get(C, None));
}
if (getenv("AFL_LLVM_LTO_DONTWRITEID") == NULL) {
uint32_t write_loc = (((afl_global_id + 63) >> 6) << 6);
GlobalVariable *AFLFinalLoc = new GlobalVariable(
M, Int32Ty, true, GlobalValue::ExternalLinkage, 0, "__afl_final_loc");
ConstantInt *const_loc = ConstantInt::get(Int32Ty, write_loc);
StoreInst * StoreFinalLoc = IRB.CreateStore(const_loc, AFLFinalLoc);
StoreFinalLoc->setMetadata(M.getMDKindID("nosanitize"),
MDNode::get(C, None));
}
if (dictionary.size()) {
size_t memlen = 0, count = 0;
// sort and unique the dictionary
std::sort(dictionary.begin(), dictionary.end());
auto last = std::unique(dictionary.begin(), dictionary.end());
dictionary.erase(last, dictionary.end());
for (auto token : dictionary) {
memlen += token.length();
count++;
}
if (!be_quiet)
printf("AUTODICTIONARY: %zu string%s found\n", count,
count == 1 ? "" : "s");
if (count) {
if ((ptr = (char *)malloc(memlen + count)) == NULL) {
fprintf(stderr, "Error: malloc for %zu bytes failed!\n",
memlen + count);
exit(-1);
}
count = 0;
size_t offset = 0;
for (auto token : dictionary) {
if (offset + token.length() < 0xfffff0 && count < MAX_AUTO_EXTRAS) {
ptr[offset++] = (uint8_t)token.length();
memcpy(ptr + offset, token.c_str(), token.length());
offset += token.length();
count++;
}
}
GlobalVariable *AFLDictionaryLen =
new GlobalVariable(M, Int32Ty, false, GlobalValue::ExternalLinkage,
0, "__afl_dictionary_len");
ConstantInt *const_len = ConstantInt::get(Int32Ty, offset);
StoreInst *StoreDictLen = IRB.CreateStore(const_len, AFLDictionaryLen);
StoreDictLen->setMetadata(M.getMDKindID("nosanitize"),
MDNode::get(C, None));
ArrayType *ArrayTy = ArrayType::get(IntegerType::get(C, 8), offset);
GlobalVariable *AFLInternalDictionary = new GlobalVariable(
M, ArrayTy, true, GlobalValue::ExternalLinkage,
ConstantDataArray::get(C,
*(new ArrayRef<char>((char *)ptr, offset))),
"__afl_internal_dictionary");
AFLInternalDictionary->setInitializer(ConstantDataArray::get(
C, *(new ArrayRef<char>((char *)ptr, offset))));
AFLInternalDictionary->setConstant(true);
GlobalVariable *AFLDictionary = new GlobalVariable(
M, PointerType::get(Int8Ty, 0), false, GlobalValue::ExternalLinkage,
0, "__afl_dictionary");
Value *AFLDictOff = IRB.CreateGEP(AFLInternalDictionary, Zero);
Value *AFLDictPtr =
IRB.CreatePointerCast(AFLDictOff, PointerType::get(Int8Ty, 0));
StoreInst *StoreDict = IRB.CreateStore(AFLDictPtr, AFLDictionary);
StoreDict->setMetadata(M.getMDKindID("nosanitize"),
MDNode::get(C, None));
}
}
}
/* Say something nice. */
if (!be_quiet) {
if (!inst_blocks)
WARNF("No instrumentation targets found.");
else {
char modeline[100];
snprintf(modeline, sizeof(modeline), "%s%s%s%s%s",
getenv("AFL_HARDEN") ? "hardened" : "non-hardened",
getenv("AFL_USE_ASAN") ? ", ASAN" : "",
getenv("AFL_USE_MSAN") ? ", MSAN" : "",
getenv("AFL_USE_CFISAN") ? ", CFISAN" : "",
getenv("AFL_USE_UBSAN") ? ", UBSAN" : "");
OKF("Instrumented %d locations with no collisions (on average %llu "
"collisions would be in afl-gcc/vanilla AFL) (%s mode).",
inst_blocks, calculateCollisions(inst_blocks), modeline);
}
}
return true;
}
char AFLLTOPass::ID = 0;
static void registerAFLLTOPass(const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
PM.add(new AFLLTOPass());
}
static RegisterPass<AFLLTOPass> X("afl-lto", "afl++ LTO instrumentation pass",
false, false);
static RegisterStandardPasses RegisterAFLLTOPass(
PassManagerBuilder::EP_FullLinkTimeOptimizationLast, registerAFLLTOPass);