blob: 26ba4420a94d37398eadc14684f17aaef252db80 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* $Id: db_utilities_camera.h,v 1.3 2011/06/17 14:03:31 mbansal Exp $ */
#ifndef DB_UTILITIES_CAMERA
#define DB_UTILITIES_CAMERA
#include "db_utilities.h"
/*****************************************************************
* Lean and mean begins here *
*****************************************************************/
/*!
* \defgroup LMCamera (LM) Camera Utilities
*/
/*\{*/
#include "db_utilities.h"
#define DB_RADDISTMODE_BOUGEUT 4
#define DB_RADDISTMODE_2NDORDER 5
#define DB_RADDISTMODE_IDENTITY 6
/*!
Give reasonable guess of the calibration matrix for normalization purposes.
Use real K matrix when doing real geometry.
focal length = (w+h)/2.0*f_correction.
\param K calibration matrix (out)
\param Kinv inverse of K (out)
\param im_width image width
\param im_height image height
\param f_correction focal length correction factor
\param field set to 1 if this is a field image (fy = fx/2)
\return K(3x3) intrinsic calibration matrix
*/
DB_API void db_Approx3DCalMat(double K[9],double Kinv[9],int im_width,int im_height,double f_correction=1.0,int field=0);
/*!
Make a 2x2 identity matrix
*/
void inline db_Identity2x2(double A[4])
{
A[0]=1;A[1]=0;
A[2]=0;A[3]=1;
}
/*!
Make a 3x3 identity matrix
*/
void inline db_Identity3x3(double A[9])
{
A[0]=1;A[1]=0;A[2]=0;
A[3]=0;A[4]=1;A[5]=0;
A[6]=0;A[7]=0;A[8]=1;
}
/*!
Invert intrinsic calibration matrix K(3x3)
If fx or fy is 0, I is returned.
*/
void inline db_InvertCalibrationMatrix(double Kinv[9],const double K[9])
{
double a,b,c,d,e,f,ainv,dinv,adinv;
a=K[0];b=K[1];c=K[2];d=K[4];e=K[5];f=K[8];
if((a==0.0)||(d==0.0)) db_Identity3x3(Kinv);
else
{
Kinv[3]=0.0;
Kinv[6]=0.0;
Kinv[7]=0.0;
Kinv[8]=1.0;
ainv=1.0/a;
dinv=1.0/d;
adinv=ainv*dinv;
Kinv[0]=f*ainv;
Kinv[1]= -b*f*adinv;
Kinv[2]=(b*e-c*d)*adinv;
Kinv[4]=f*dinv;
Kinv[5]= -e*dinv;
}
}
/*!
De-homogenize image point: xd(1:2) = xs(1:2)/xs(3).
If xs(3) is 0, xd will become 0
\param xd destination point
\param xs source point
*/
void inline db_DeHomogenizeImagePoint(double xd[2],const double xs[3])
{
double temp,div;
temp=xs[2];
if(temp!=0)
{
div=1.0/temp;
xd[0]=xs[0]*div;xd[1]=xs[1]*div;
}
else
{
xd[0]=0.0;xd[1]=0.0;
}
}
/*!
Orthonormalize 3D rotation R
*/
inline void db_OrthonormalizeRotation(double R[9])
{
double s,mult;
/*Normalize first vector*/
s=db_sqr(R[0])+db_sqr(R[1])+db_sqr(R[2]);
mult=sqrt(1.0/(s?s:1));
R[0]*=mult; R[1]*=mult; R[2]*=mult;
/*Subtract scalar product from second vector*/
s=R[0]*R[3]+R[1]*R[4]+R[2]*R[5];
R[3]-=s*R[0]; R[4]-=s*R[1]; R[5]-=s*R[2];
/*Normalize second vector*/
s=db_sqr(R[3])+db_sqr(R[4])+db_sqr(R[5]);
mult=sqrt(1.0/(s?s:1));
R[3]*=mult; R[4]*=mult; R[5]*=mult;
/*Get third vector by vector product*/
R[6]=R[1]*R[5]-R[4]*R[2];
R[7]=R[2]*R[3]-R[5]*R[0];
R[8]=R[0]*R[4]-R[3]*R[1];
}
/*!
Update a rotation with the update dx=[sin(phi) sin(ohm) sin(kap)]
*/
inline void db_UpdateRotation(double R_p_dx[9],double R[9],const double dx[3])
{
double R_temp[9];
/*Update rotation*/
db_IncrementalRotationMatrix(R_temp,dx);
db_Multiply3x3_3x3(R_p_dx,R_temp,R);
}
/*!
Compute xp = Hx for inhomogenous image points.
*/
inline void db_ImageHomographyInhomogenous(double xp[2],const double H[9],const double x[2])
{
double x3,m;
x3=H[6]*x[0]+H[7]*x[1]+H[8];
if(x3!=0.0)
{
m=1.0/x3;
xp[0]=m*(H[0]*x[0]+H[1]*x[1]+H[2]);
xp[1]=m*(H[3]*x[0]+H[4]*x[1]+H[5]);
}
else
{
xp[0]=xp[1]=0.0;
}
}
inline double db_FocalFromCamRotFocalHomography(const double H[9])
{
double k1,k2;
k1=db_sqr(H[2])+db_sqr(H[5]);
k2=db_sqr(H[6])+db_sqr(H[7]);
if(k1>=k2)
{
return(db_SafeSqrt(db_SafeDivision(k1,1.0-db_sqr(H[8]))));
}
else
{
return(db_SafeSqrt(db_SafeDivision(1.0-db_sqr(H[8]),k2)));
}
}
inline double db_FocalAndRotFromCamRotFocalHomography(double R[9],const double H[9])
{
double back,fi;
back=db_FocalFromCamRotFocalHomography(H);
fi=db_SafeReciprocal(back);
R[0]=H[0]; R[1]=H[1]; R[2]=fi*H[2];
R[3]=H[3]; R[4]=H[4]; R[5]=fi*H[5];
R[6]=back*H[6]; R[7]=back*H[7]; R[8]=H[8];
return(back);
}
/*!
Compute Jacobian at zero of three coordinates dR*x with
respect to the update dR([sin(phi) sin(ohm) sin(kap)]) given x.
The Jacobian at zero of the homogenous coordinates with respect to
[sin(phi) sin(ohm) sin(kap)] is
\code
[-rx2 0 rx1 ]
[ 0 rx2 -rx0 ]
[ rx0 -rx1 0 ].
\endcode
*/
inline void db_JacobianOfRotatedPointStride(double J[9],const double x[3],int stride)
{
/*The Jacobian at zero of the homogenous coordinates with respect to
[sin(phi) sin(ohm) sin(kap)] is
[-rx2 0 rx1 ]
[ 0 rx2 -rx0 ]
[ rx0 -rx1 0 ]*/
J[0]= -x[stride<<1];
J[1]=0;
J[2]= x[stride];
J[3]=0;
J[4]= x[stride<<1];
J[5]= -x[0];
J[6]= x[0];
J[7]= -x[stride];
J[8]=0;
}
/*!
Invert an affine (if possible)
\param Hinv inverted matrix
\param H input matrix
\return true if success and false if matrix is ill-conditioned (det < 1e-7)
*/
inline bool db_InvertAffineTransform(double Hinv[9],const double H[9])
{
double det=H[0]*H[4]-H[3]*H[1];
if (det<1e-7)
{
db_Copy9(Hinv,H);
return false;
}
else
{
Hinv[0]=H[4]/det;
Hinv[1]=-H[1]/det;
Hinv[3]=-H[3]/det;
Hinv[4]=H[0]/det;
Hinv[2]= -Hinv[0]*H[2]-Hinv[1]*H[5];
Hinv[5]= -Hinv[3]*H[2]-Hinv[4]*H[5];
}
return true;
}
/*!
Update of upper 2x2 is multiplication by
\code
[s 0][ cos(theta) sin(theta)]
[0 s][-sin(theta) cos(theta)]
\endcode
*/
inline void db_MultiplyScaleOntoImageHomography(double H[9],double s)
{
H[0]*=s;
H[1]*=s;
H[3]*=s;
H[4]*=s;
}
/*!
Update of upper 2x2 is multiplication by
\code
[s 0][ cos(theta) sin(theta)]
[0 s][-sin(theta) cos(theta)]
\endcode
*/
inline void db_MultiplyRotationOntoImageHomography(double H[9],double theta)
{
double c,s,H0,H1;
c=cos(theta);
s=db_SafeSqrt(1.0-db_sqr(c));
H0= c*H[0]+s*H[3];
H[3]= -s*H[0]+c*H[3];
H[0]=H0;
H1=c*H[1]+s*H[4];
H[4]= -s*H[1]+c*H[4];
H[1]=H1;
}
inline void db_UpdateImageHomographyAffine(double H_p_dx[9],const double H[9],const double dx[6])
{
db_AddVectors6(H_p_dx,H,dx);
db_Copy3(H_p_dx+6,H+6);
}
inline void db_UpdateImageHomographyProjective(double H_p_dx[9],const double H[9],const double dx[8],int frozen_coord)
{
int i,j;
for(j=0,i=0;i<9;i++)
{
if(i!=frozen_coord)
{
H_p_dx[i]=H[i]+dx[j];
j++;
}
else H_p_dx[i]=H[i];
}
}
inline void db_UpdateRotFocalHomography(double H_p_dx[9],const double H[9],const double dx[4])
{
double f,fp,fpi;
double R[9],dR[9];
/*Updated matrix is diag(f+df,f+df)*dR*R*diag(1/(f+df),1/(f+df),1)*/
f=db_FocalAndRotFromCamRotFocalHomography(R,H);
db_IncrementalRotationMatrix(dR,dx);
db_Multiply3x3_3x3(H_p_dx,dR,R);
fp=f+dx[3];
fpi=db_SafeReciprocal(fp);
H_p_dx[2]*=fp;
H_p_dx[5]*=fp;
H_p_dx[6]*=fpi;
H_p_dx[7]*=fpi;
}
/*\}*/
#endif /* DB_UTILITIES_CAMERA */